

Lifting Off into Space-based Architecture with

Magic xpi 4.x

Self-Paced Tutorial

Book ID: UTLSBAMI4

Edition: 1.3, March 2015

Course ID: UCLOSBMI4

Magic University Official Courseware

2

The information in this manual/document is subject to change without prior notice and does not represent a commitment on the part of

Magic Software Enterprises Ltd.

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in accordance

with the terms and conditions of the license agreement. It is against the law to copy the software on any medium except as specifically

allowed in the license agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording or information recording and retrieval systems, for any purpose other than the purchaser’s personal

use, without the prior express written permission of Magic Software Enterprises Ltd.

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of Magic

Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a completely

fictitious scenario or scenarios and are designed solely to document the use of Magic xpi.

Magic™ is a trademark of Magic Software Enterprises Ltd.
Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software Inc.

IBM®, Topview™, System i5/System i™, pSeries®, xSeries®, RISC System/6000®, DB2®, WebSphere®, Domino®, and Lotus Notes® are
trademarks or registered trademarks of IBM Corporation.

Microsoft®, FrontPage®, Windows™, WindowsNT™, ActiveX™, Exchange 2007™, Dynamics® CRM, SharePoint®, Excel®, and Word® are
trademarks or registered trademarks of Microsoft Corporation.

Oracle®, JD Edwards EnterpriseOne®, JD Edwards World®, and OC4J® are registered trademarks of the Oracle Corporation and/or its

affiliates.

Google Calendar™ and Google Docs™ are trademarks of Google Inc.
Salesforce® is a registered trademark of salesforce.com Inc.

SAP® Business One and SAP® R/3® are registered trademarks of SAP AG in Germany and in several other countries.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of UNIX System Laboratories.

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation.

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems Inc.

HP-UX® is a registered trademark of the Hewlett-Packard Company.

Red Hat® is a registered trademark of Red Hat Inc.

WebLogic® is a registered trademark of BEA Systems.

Interstage® is a registered trademark of the Fujitsu Software Corporation.

JBoss™ is a trademark of JBoss Inc.
GigaSpaces, GigaSpaces eXtreme Application Platform (XAP), GigaSpaces eXtreme Application Platform Enterprise Data Grid (XAP EDG),

GigaSpaces Enterprise Application Grid, GigaSpaces Platform, and GigaSpaces, are trademarks or registered trademarks of GigaSpaces

Technologies.

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc.

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details

This product uses icons created by Axialis IconWorkShop™ (http://www.axialis.com/free/icons)
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark Cooper.

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology Inc All rights reserved.

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved.

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All Rights

Reserved.

All other product names are trademarks or registered trademarks of their respective holders.

Lifting Off into Space-based Architecture with Magic xpi 4.x

March 2015

Copyright © 2013-2015 by Magic Software Enterprises Ltd. All rights reserved.

3

Table of Contents
Introduction ... 5

About Magic xpi 4.x’s Space-based Architecture .. 5

About the Course .. 6

How to Use This Guide .. 7

Exercises ... 7

Course Materials .. 7

Installing the Course Materials .. 7

Benefits of Space-based Architecture ... 9

Tier-based Architecture .. 10

Magic xpi 4.x Architecture at a Glance ... 10

Summary ... 12

Magic xpi Architecture with GigaSpaces ... 13

Magic xpi’s Architecture .. 14

In-Memory Data Grid Terminology .. 15

Summary ... 16

Project Execution .. 17

Startup Mechanism ... 18

Workers and Triggers ... 23

Variables ... 25

Licensing ... 25

Summary ... 27

Recovery and Monitoring .. 29

Recovery ... 30

Monitoring ... 34

GigaSpaces User Interface Monitor ... 36

Exercise ... 39

Summary ... 39

Deployment ... 41

Deploying the Magic Space ... 42

Partitions and Containers ... 44

Memory Allocation ... 49

Clustering .. 50

Starting Projects from the Command Line .. 54

Starting and Stopping Projects from the Monitor .. 54

Exercise ... 55

Summary ... 55

Troubleshooting ... 57

GigaSpaces UI Troubleshooting .. 58

Log Files .. 60

Project Startup Troubleshooting ... 60

Exercise ... 63

Summary ... 64

Glossary ... 65

Magic xpi Space-related Terminology .. 65

In-Memory Data Grid Terminology .. 66

4

5

Introduction

Welcome to Magic Software University’s Lifting Off into Space-based Architecture with

Magic xpi 4.x self-paced tutorial. We, at Magic Software University, hope that you will find

this tutorial informative and that it will assist you in getting started with this exciting product.

About Magic xpi 4.x’s Space-based Architecture
While Magic xpi 3.x was based on the Magic Request Broker middleware, Magic xpi 4.x

uses an In-Memory Data Grid (IMDG) as its underlying messaging and context persistency

layer.

You can easily prepare to handle new demands created by enterprise mobility and cloud

services and take advantage of the immediate benefits and capabilities of

Magic xpi 4.x including:

 Built-in clustering and fail-over capabilities
 Unlimited linear and elastic scalability
 High availability
 Automated recovery
 Improved management and monitoring capabilities

6

About the Course
Magic University’s Lifting Off into Space-based Architecture with Magic xpi 4.x course is

intended for people with experience in working with Magic xpi 3.x or iBOLT V3.x, and who

want to take full advantage of the Space-based architecture on which Magic xpi 4.x is built.

In this course you will learn about:

 The benefits of Space-based architecture
 The architecture of Magic xpi and its new Space-based infrastructure
 Magic xpi 4.x’s startup mechanism and licensing
 The Magic xpi recovery processes
 The improved monitoring capabilities
 What to consider when deploying Magic xpi 4.x
 Some useful guidelines for troubleshooting Magic xpi 4.x

Course Prerequisites

Before you start with the course there is basic knowledge that you need to have:

Development knowledge Familiar with Magic xpi 3.4 or iBOLT V3.x

Your computer must also meet some basic requirements:

Hardware  Windows XP Pro and later. The course was tested on
Windows 7

 Pentium processor 1.8GHz and upwards
 4Gb RAM or greater
 At least 1Gb of free space
 Screen resolution of at least 1024x768 pixels

MS SQL Server MS SQL version 2000 and above. You will need the
supervisor password for this installation.

.NET Framework  Verify that either .NET Framework version 2.0, 3.0,
or 3.5 is installed on your machine. Ensure that one
of these is the .NET CLR 2.0 version.

 Also verify that .NET Framework 4.0 is installed on
your machine.

License The course uses the standard license. Please obtain a
Magic xpi 4.x IBNPSRV evaluation license from your
local Magic Software Enterprises representative.

7

How to Use This Guide
To get the most out of this guide, follow the classroom lesson and ask any questions that you

have. You can then review the self-paced guide for that lesson, and if you have further

questions you can ask the instructor before the next lesson.

The self-paced guide provides detailed step-by-step instructions. If you are learning using this

self-pace tutorial, feel free to contact your Magic Software Enterprises representative or the

Support department for further assistance.

Exercises
At the end of most lessons, there is an exercise. These are based on what you have learned

during the lesson. In some of these exercises, you are asked to work with a second computer

to try and get the best productivity out of the exercise.

Course Materials
The course includes the following:

 Course project – This is the course project, SpaceCourse. During this course you will use
this ready-built project. The project is a simple project with a single flow containing a
Scheduler service that is invoked every two seconds. There are five Delay services that are
invoked every second to copy XML files, and another Delay service that deletes all of the
created files.

Installing the Course Materials

Install the Magic xpi 4.x Suite by running the Setup.exe file. Use the default
settings.

 Copy the course project SpaceCourse to your projects directory.
 Please ensure that your computer meets the hardware requirements

listed on the previous page.

8

A number of installation screens including the screen where you can set the Space-based

configuration.

For this tutorial, there is no need to change any of the defaults. You will learn about the

different options later on in this tutorial when you learn about working with a clustered

environment.

Magic xpi 4.x Licensing

Magic xpi 4.x does not work with licenses from previous versions. You need to request a new

license from your Magic Software Enterprises representative.

The new license contains MAGIC 2.000 version and the flag VERSION=4.0, as part of the

Vendor String.

Upgrading from Previous Versions

Upgrading to Magic xpi 4.x is simple. The method is the same as earlier versions. Copy your

previous version’s project into your new project’s folder. Then launch Magic xpi 4.x and open
the project. Magic xpi 4.x recognizes that this project was developed in a previous version

and opens a dialog box where you can select to upgrade to the current version.

9

Benefits of Space-based Architecture

Magic xpi 4.x now features a Space-based architecture, thereby enhancing the capability of

the product. This lesson introduces you to the benefits of Magic xpi’s new Space-based

architecture and how it improves your final product.

This lesson covers various topics including:

 Tier-based architecture
 Magic xpi 4.x’s architecture at a glance
 In-Memory Data Grid
 Replication
 Clustering

Lesson 1

10

Tier-based Architecture
Magic xpi 3.x is based on the Magic Request Broker middleware, which uses a tier-based

architecture. Tier-based architecture is comprised of separate tiers, including a business logic

tier, a data tier and a web client, and sometimes also a web tier and a messaging tier. One

main issue with the separate tiers is that a bottleneck can occur in any of the tiers, which

makes maintaining and troubleshooting tier-based projects time consuming and expensive.

Each tier requires a different skill set, thereby increasing the manpower needed for its upkeep.

Magic xpi 4.x Architecture at a Glance

With Magic xpi 4.x, you can now set up any of the following configurations:

 Single host + Single engine
 Single host + Multiple engines
 Multiple hosts + Multiple engines

All of these configurations are available thanks to the In-Memory Data Grid.

In-Memory Data Grid

In Magic xpi 4.x, the broker was replaced by the In-Memory Data Grid (IMDG). One of the

biggest benefits of the new Space-based architecture is that the IMDG does away with a

single point-of-failure by spreading out the logic across multiple servers running on multiple

machine instances (physical or virtual). In the In-Memory Data Grid, the business logic tier,

data tier and the messaging tier reside together on each of the space partitions and are stored

in memory. Since the data is managed in memory, disk access is reduced.

Each partition handles all of the logic in a processing unit. Each processing unit holds a subset

of the data. Together, the partitions make up the Magic Space, which for all intents and

purposes, works like a database.

The processing units are independent of one another, so that the application can scale

upwards by adding more processing units. The IMDG can contain multiple spaces.

Processing Unit

Data

Messaging

Processing Unit

Data

Messaging

Processing Unit

Data

Messaging

Space

11

The capabilities of the new architecture provide built-in active/active clustering and fail-over

capabilities for Magic xpi projects. It also enables unlimited linear scalability and improves

performance.

As you can see in the image on the right, you can add servers to the grid to form a logical

grid. You can add servers without disrupting the other servers, thereby extending the data

grid. You will learn more about how this works and the various components later in this

tutorial.

Replication

In the Magic xpi architecture, each partition can have a backup, which ensures high

availability of the information. This improves data consistency and provides high availability

of the data.

In replication, you have a partition which is active, known as the primary partition, and

another partition which is the backup, often residing on a different server or on a different

process on the same server. The so-called primary partition replicates the data with the backup

partition.

Processing Unit

Primary

Processing Unit

Backup

Replication

If the primary partition fails, the backup partition immediately becomes active as the primary

partition and already contains the entire information set. The system will then try to

automatically load another processing unit that will behave as the new backup unit. This

mechanism ensures that the system is self-healing and has zero downtime.

Processing Unit

Primary A

Processing Unit

Backup A

Replication

Processing Unit

Primary B

Processing Unit

Backup B

Replication

12

Clustering

In Space-based architecture, the Magic Space can reside on several computers (physical or

virtual) that are viewed as a single logical unit, also known as a cluster. A cluster can be seen

as a single "large" Space and enhances your applications’ scalability, high availability and

load balancing. You can have a combination of both clustering and partitioning to ensure that

the Magic Space and the data are always available.

Summary
In this lesson, you learned about the benefits of Space-based architecture. In this architecture,

you have a processing unit that is made up of three layers: business logic, data, and

messaging. One or more processing units form what is known as the Magic Space. An

incoming request will only see the Magic Space, and not each individual processing unit. As a

result, it is easy to add processing units to keep up with demand.

The Magic Space itself is an entity on the In-Memory Data Grid. Data is kept in memory,

thereby providing faster access to the data. This makes each process faster.

To develop a fail-safe system, you can use a primary-backup implementation and clustering,

which ensure zero downtime of your system.

In the next lesson, you will learn how Magic xpi works with the Space-based architecture.

13

Magic xpi Architecture with GigaSpaces

GigaSpaces’ XAP in-memory computing technology is the middleware that implements

Magic xpi’s functionality on the In-Memory Data Grid. The GigaSpaces middleware is the

underlying messaging and context persistency layer of Magic xpi.

This lesson covers various topics including:

 A detailed explanation of Magic xpi’s Space-based architecture
 In-memory grid terminology

Lesson 2

14

Magic xpi’s Architecture

This section describes the various parts of Magic xpi’ new architecture. A more detailed
explanation of each of the parts will be described in the next lesson.

To enable complete scalability and independence, Magic xpi 4.x loads the project’s metadata

and runtime context into the Magic Space and not into the process memory of the local

machine as in previous versions. By doing this, all shared data is available to all the

Magic xpi servers and workers running a project, and on all machines participating in the

grid. This enables any project to easily scale to any number of machines.

The Magic xpi servers (engines) communicate with the Magic Space through a GigaSpaces

proxy. The GigaSpaces proxy is the GigaSpaces module (the middleware layer) that connects

client applications to the Space. The Magic Space can reside on a number of processes and a

number of machines as a single unit. It is the responsibility of the GigaSpaces proxy to make

the right connections between the servers and the Space partitions.

Three elements work together when the server is up and running: workers, polling triggers and

external triggers.

Workers

In general, a worker is a thread that takes a message from the space and executes the

message (the flow logic).

In previous versions, requests were sent to the broker and it was the broker’s duty to find a

server (engine) that could handle the request. This is known as a push mechanism. If there

were no available threads to handle the request, the broker would put them in a queue until

there was an available thread or a timeout was reached. If there was a problem with the

broker, no requests were handled.

15

In Magic xpi 4.x, the broker has been replaced with a pull mechanism. In Magic xpi 4.x, the

server has zero or more workers (a pool of workers) that are simultaneously actively searching

the Magic Space for requests to handle.

Triggers

Polling Triggers

A polling trigger (such as the Directory Scanner), also known as an asynchronous trigger, is a

Magic xpi server thread that constantly checks external systems (such as an email account) to

see whether it needs to invoke a flow without waiting for a response. When it needs to invoke

a flow, it places a message in the Magic Space.

External Triggers

An external trigger, such as the HTTP Requester or a Web server, is an external application.

Once the trigger receives a request, it places a message in the Magic Space that invokes the

flow. The synchronous external triggers will also wait for a response message.

In-Memory Data Grid Terminology
You will come across the following terms when you work with GigaSpaces. Throughout the

tutorial you’ll be introduced to these concepts and see how they tie into the architecture. You

can find a more detailed explanation of these terms in the Glossary at the end of this tutorial.

 Grid Service Agent (GSA) – This is installed by the Magic xpi installation as an operating
system process. It runs on a specific machine and is responsible for adding that machine
to the grid, monitoring grid processes on its own machine, and restarting them in case of
process failure.

 Grid Service Container (GSC) – A container that hosts processing units or Space
partitions.

 Grid Service Manager (GSM) – The service that manages the Grid Service Containers.
The GSM deploys and undeploys processing units to the grid. The GSM monitors the
processing units running within each GSC.

 Lookup Service (LUS) – A registry that contains information as to where each loaded
component is actually situated.

16

Summary

In this lesson, you were introduced to the terminology used in Space-based architecture. You
learned about the various grid components and the part that they take in the flow cycle.

You learned about the new Magic xpi 4.x architecture, and how the message mechanism has
changed from a push mechanism to a pull mechanism.

17

Project Execution

How the project loads and runs has been enhanced to ensure that the project works smoothly

and effortlessly.

This lesson covers various topics including:

 Startup mechanism
 Workers
 Triggers
 Licenses

Lesson 3

18

Startup Mechanism

In general, when you start a project, this is the cycle that is initiated.

1. The project is started.

2. The start option creates a server entity in the Magic Space and updates the status in

the Advanced Monitoring Console with START_REQUESTED.

 (You’ll learn more about the statuses in a later lesson.)
3. The Magic processing unit scans the Magic Space looking for server entities whose

status is START_REQUESTED.

4. Once the Magic processing unit finds a server entity with a status of

START_REQUESTED, it scans for the Grid Service Agent (GSA) according to the host

name or IP address defined in the server entity. The Magic processing unit passes all of

the parameters defined in this server entity to the GSA.

5. The GSA starts the Magic xpi server according to parameters passed to it from the

Magic processing unit.

6. When the Magic xpi server connects to the Magic Space, it searches for the server

entity according to its ID. The Magic xpi server then updates the server entity’s status to

RUNNING, and the cycle is complete. The project starts executing.

19

In the following sections, you will read more about the steps described above. First though, it’s
important that you become familiar with the start.xml configuration file.

Start.xml File

The start.xml configuration file is created by the Magic xpi Studio during the build process
(from the File menu), and only if it does not already exist.
This is the configuration file that will be used when the project is executed. The file is located

in the projects folder. The name of the start.xml file is set in the StartProjectFileName property

in the Magic.ini file’ new [MAGICXPI_GS] section.

Any modifications to the configuration file need to be done manually using an external editor,

such as Notepad or any XML editor.

If you deploy your project on a different machine than the

development machine, you need to modify the start.xml file

accordingly.

Here is an example start.xml file:

20

As you can see in the example above, from within the configuration file you can define:

 An alternate host (alternateHosts). This flag gives you the option to define an alternate host
for the server to work with if the main host is unavailable or if the startup procedure on the
main host fails.

 The number of workers that the server will load (NumberOfWorkers). You can load a
server without workers, NumberOfWorkers=0, if you want, for example, that the server
will only listen for triggers.
Note: The number of workers that will execute a flow at any given time is bound by the
number of threads in the license.

 The number of instances of the Magic xpi server (NumberOfInstances). If you set the
number of workers as 10 and the number of instances as 2, you will have two identical
servers with 10 workers each.

 Whether this server will load the triggers. When you load more than one server to handle
a specific project, there is no need for each server to handle the triggers. You should
define that a specific server will listen for trigger events and the other servers will not.

 Whether the server will load the scheduler. Note that only a single server should load the
scheduler; otherwise, you will have duplicate scheduled invocations.

 Whether the server will execute the AutoStart flows. If you have a flow that initializes
database tables, you would not want all the servers that load to initialize the tables when
they load.

Remember that with Magic xpi 4.x, you can set up any of the following

configurations:

 Single server + Single engine + Multiple workers
 Single server + Multiple engines + Multiple workers
 Multiple servers + Multiple engines + Multiple workers

Step 1: Starting a Project

Starting a project is done in one of three ways:

1. Clicking the link. This Start link is created in the project’s directory when the
project is built. The link points to the start.xml configuration file.

2. Clicking the Start option from the Monitor or the Debugger. This option also uses the

start.xml file that is in the project folder.

3. Automatically, by creating a file called projectsStartup.xml and saving it in the

<Magic xpi installation>/config folder. When the Magic xpi service starts and

manages to deploy the Magic Space, it will automatically start the projects and servers

that are listed in the projectsStartup.xml file. The structure of the projectsStartup.xml is

identical to the structure of the start.xml created under each project. Details about how

to work with this file are discussed later on in the Deployment lesson.

21

Step 2: Magic Server Entity Created

When you start the project as described in step 1, the engine creates an entity (or entities) in

the Magic Space with the metadata from the project’s start.xml file, a unique ID and a status

of START_REQUESTED. Every time you start the project, another instance of the entity is

created in the Magic Space.

In the GigaSpaces Management Center, you can see that a data type called ServerData is

created. This is the server entity that is created when you start a project. This screen will be

discussed later on in this tutorial.

Steps 3 and 4: Magic Processing Unit

The Magic processing unit scans the Magic Space looking for server entities whose status is

START_REQUESTED. Once it finds a server entity with a status of START_REQUESTED, the

Magic processing unit scans for the Grid Service Agent (GSA) according to the host name (as

shown in the image below) or the IP address defined in the server entity, which is based on

the start.xml file. The Magic processing unit passes all of the startup information (parameters)

defined in the server entity to the GSA.

If the GSA is not available, the Magic processing unit will keep checking at a later stage to

see if it is available.

22

In the start.xml configuration file, you can define machines that are
not running or you can define that the GSA is not running. You
can start the GSA on those machines when the workload is high.
Once the GSA loads, the Magic processing unit will find it and the
cycle will begin.

Step 5: Starting the Magic xpi Server

The GSA running on the host machine specified in the server entity starts the Magic xpi Server
(the MgxpiServer.exe process, also known as the engine) according to the parameters passed
to it from the Magic processing unit.

 If a project is not running yet, the first MgxpiServer.exe process that starts will create the
project by loading the project entity to the Magic Space.

 If a project is already running, the loaded MgxpiServer.exe process will join the existing
project and add its own workers and triggers to the work force.

Step 6: Server Up and Running

One of the parameters passed to the Magic xpi project is also the ID of the server entity

created in the Space. When the Magic xpi server registers, it connects to the Magic Space

and searches for the server entity identified by the ID and updates the status to RUNNING.

The server can now start handling requests.

Startup Failed

If a server entity’s status remains as START_REQUESTED and does not change to RUNNING,

the Magic processing unit checks with the GSA to see whether the actual process is running.

 If the process is not running, the server entity’s status will change to START_FAILED.
 If the process is running, the Magic processing unit will first instruct the GSA to terminate

the process and then it will update the server entity with START_FAILED.

Why the startup fails and how to deal with this are discussed later on in the lesson about

troubleshooting.

23

Workers and Triggers
Now that the project is running, three elements work simultaneously: workers, polling triggers
and external triggers. As was said earlier, each Magic xpi server can run one or more
workers/triggers for a variety of tasks. Here is an explanation of the actual process that the
workers and triggers go through.

Workers

Each worker scans the Magic Space for jobs to execute (messages whose status is

READY_FOR_USE). The message in the Magic Space contains all of the data (payload) that

the worker needs to execute the flow. This is known as the message payload.

When the worker finds a message with a status of READY_FOR_USE, it changes the status to

IN_PROCESS. It does this within a transaction to prevent two workers from executing the same

message. The worker then executes the flow.

When a worker takes the flow message from the Magic Space
together with its payload, it does not remove the flow message
from the Space. It remains there until the flow has completed. One
reason for this is to be able to restart the flow during recovery.

Triggers

Polling Triggers

The polling trigger constantly checks external systems to see whether it needs to invoke a flow

without waiting for a response. When it needs to invoke a flow, it places a message with a

status of READY_FOR_USE in the Magic Space.

External Triggers

Once an external trigger receives a request, it places a message in the Magic Space that

invokes the flow and waits for a response message.

Trigger Buffer

Each trigger has a predefined queue or buffer. Once the queue is full, the trigger will wait

before polling the system and creating a new flow request message in the Magic Space.

The default size of the trigger buffer is set to 10. This is set internally by the Magic xpi server.

24

However, you can override this value by changing the TriggersBufferSize in the Magic.ini file.

By default, this flag does not appear in the Magic.ini file. To override the value, you should:

1. Open the Magic.ini file in Notepad.

2. Go to the [MAGICXPI_GS] section of

the Magic.ini file.

3. Add a line such as

TriggersBufferSize=5.

Remember that this flag defines the buffer size for all triggers.

Multiple Triggers

You can use multiple instances of some Magic xpi triggers in your projects and the distribution

of triggers over the project’s engines is configurable at deployment time. This not only allows

you to control where each trigger will run, but also to set the same trigger to run on more than

one engine. This lets you scale the trigger processing capability.

You use the start.xml file to define which triggers will run on each server. Whenever you build

or rebuild a project that contains triggers, an example start.xml.triggers file is created under

the projects/<project name> folder.

In the start.xml.triggers file, you will see these trigger details expressed in the following way:

<Trigger BP_ID=”1” Flow_ID=”3” Trigger_ID=”2” Name="SFDC Customers sync"/>

<Trigger BP_ID="1" Flow_ID="7" Trigger_ID="3" Name="Check Emails"/>

<Trigger BP_ID="2" Flow_ID=”5” Trigger_ID="5" Name="SugarCRM Contacts"/>

To determine which triggers will run on which server, you need to copy and paste the trigger
details into your project’s start.xml file, as shown in red in the image below.

25

After the Main Flow Is Completed

When the main flow is completed, the worker updates the request message’s status in the
Magic Space to DONE, and is then free to scan for additional messages.

If the message is from a synchronic trigger (such as an HTTP trigger), when the flow ends, the
worker writes a response message to the Magic Space, which the trigger will send to the
client. Every parallel and stand-alone branch is also handled as a separate message written
by the flow to the Magic Space. This new thread (the parallel or stand-alone branch) can be
handled by any worker of the project, even a worker running on a different machine.

Variables
Since business process and global variables are shared by all servers belonging to the same

running project, these values are stored in the Space and not in each processes’ memory,
which is where they were stored in Magic xpi 3.x.

Licensing
In Magic xpi 4.x, all licenses are floating licenses with an option to reserve a fixed (minimum)

number of license threads for each project. Each license entry has an entry for the number of

workers (threads) that the server can execute concurrently. The licenses are available for use

by all of the projects. The Magic Space acts as the license server. Before executing a flow, the

worker will attempt to check-out the license from the pool. When it has finished executing the

flow, the worker will check the license back into the pool.

In contrast with previous versions where you defined the maximum
number of licences that the project will consume, in Magic xpi 4.x
you define the minimum number of licenses that you need.

Reserving License Threads for a Project

If you are running multiple projects, and some projects

may consume all threads under stress conditions (for

example, there are many Web services and/or HTTP

requests), you should consider reserving a fixed

(minimum) amount of license threads for critical projects

that need to run continually.

As with previous versions, you can define reserved

licenses for a certain project as well. You do this by

opening the IFS Settings dialog box, and setting the

Reserved License Threads property. When the project is executed, the workers will check out

the licenses defined in this property, but will not check them back in. The license is not

26

released even when the worker has completed the flow. The project can also use other

licenses from the pool.

If a server is manually shutdown or stopped in the Advanced Monitoring Console, the reserved

licenses will be returned to the pool. Servers handling that project will continue consuming

floating licenses. However, when the server is restarted or another server is loaded for that

project, the reserved licenses will once again be checked out.

Host Locked License

All licenses produced by Magic Software Enterprises are now host locked. This means that

once activated, you must use them on the machine used for the activation. When a Magic xpi

project loads from this server, it adds the license into the Magic Space according to the

License Feature Name defined in the ifs.ini file, such as IBPRSRVI, and the serial number

defined in the license file.

All Magic xpi servers will start normally, even if they are running on a different host, but they

will not run any flows until the server that was host locked runs a Magic xpi server. The

Magic xpi server that runs on the host locked server is the only one that can update the thread

count in the Magic Space. The Magic xpi server on the host locked server does not have to

keep running. Once it sets the thread count in the Magic Space, it is not needed to maintain

the license. It can therefore be stopped and started like any other Magic xpi server on the

grid.

License for Clustered Environments

In Magic xpi 4.x clustered environments, you only need a single host locked license for the

entire cluster. All Magic xpi installations should be configured to point to the same license file

(you can put it in a shared location). This will be discussed in more detail in the Clustering

section of this tutorial.

Different Serial Numbers

Each feature is based on a serial number. If you have two licenses with the same license

feature name but different serial numbers, the total number of workers available will be the

combination of both licenses. However, the expiration date of the license will be the earliest

date. This can happen if you have two separate servers that have licenses with activated hosts.

27

Refreshing a License

When you receive a new license, which may either contain an extension of the expiration

date or more license threads, you need to refresh the license record in the Magic Space. The

refresh process is simple; you simply need to load a Magic xpi server on the server activated

for the license. This will immediately update the information on the Magic Space. If you added

license threads, the threads will then be available for all of the running workers.

The license will not be updated if there are fewer licenses than before, or if the expiration date

is earlier than the previous license.

Summary
In this lesson, you learned how the Magic xpi project loads and all of the steps involved in the

startup mechanism.

You also learned about the start.xml configuration file and each of its flags.

You then learned that the Magic xpi 4.x license is now host locked and that you select the

minimum number of required licenses.

28

29

Recovery and Monitoring

Magic xpi 4.x includes robust recovery processes enabling you to develop projects that

recover automatically from many disaster and failure scenarios. Magic xpi 4.x also provides

various monitoring capabilities including the Monitor that you are familiar with from

Magic xpi 3.x, the Advanced Monitoring Console, the new Magic Monitor and the monitoring

abilities available using the GigaSpaces user interface.

This lesson covers various topics including:

 Magic xpi server recovery
 Worker recovery
 Work process recovery
 Magic xpi Monitor
 Advanced Monitoring Console
 Magic Monitor
 GigaSpaces user interface

Lesson 4

30

Recovery
The new architecture provides Magic xpi 4.x with an enhanced recovery mechanism. The

Grid Service Agent is able to automatically reload components that have crashed. When a

primary partition crashes in the Magic Space, the backup immediately takes over. Magic xpi

also has its own recovery mechanisms.

Magic xpi Server Recovery

All of the Magic xpi entities, meaning the Magic xpi server and the workers, have a “keep
alive” mechanism. At certain predefined intervals, they update the Magic Space with a

timestamp to show that they are still active.

With the Magic xpi server (engine), if the Magic Space is not updated with a new timestamp

after a fixed predefined internal timeout interval of two minutes, the Magic processing unit

uses the same mechanism that you learned about earlier in this lesson in the Startup Failed

section. However, instead of changing the status to START_FAILED as it does in the startup

scenario, here it loads another Magic xpi server. The steps here are:

1. The Magic processing unit checks with the Grid Service Agent to see whether the

process is running.

2. If the process is running, the Magic processing unit instructs the GSA to terminate the

process.

3. It instructs the GSA to load another Magic xpi server, thereby recovering the server

and updates the server entity with START_REQUESTED.

4. If the ServerData entity contains AutoStart load="true" for a server that has crashed,

Magic xpi will not perform another autostart when the engine recovers. You can see

this setting in the Advanced Monitoring Console or in the start.xml file.

Advanced Monitoring Console start.xml file

31

Worker Recovery

The worker also updates the Magic Space with a time interval to show that it is still alive. If the

Magic xpi server sees that a worker is not responding, it will check to see whether the worker

thread is still alive. If it is no longer alive, the Magic xpi server will load another in its place.

However, if the process is still running and is not responding, it may be processing an external

task, such as an SQL statement. The Magic xpi server will wait until the timeout duration has

exceeded, and then will follow the Timeout policy defined in the flow properties. If no policy

has been defined, Magic xpi will wait indefinitely.

If you are using multiple Magic xpi Servers, make sure that all of

the machines’ clocks are synchronized.

Work Process Recovery

A work process refers to the execution tree of an entire root flow (the main flow) including its

child flows. The work process as a whole is treated as a single business transaction. The root

flow is a flow that was not invoked by a parent flow. The flow may have been started by a

trigger, the Scheduler, Auto-start, or a Publish/Subscribe scenario.

Magic xpi uses the recovery policy defined in the root flow and ignores the recovery policies

defined for the child flows.

A stand-alone branch is not considered part of the work process
since it is detached from the work process. Therefore, it has its
own execution tree. If a stand-alone branch crashes, the recovery
policy will be taken from its own flow properties and not from the
main flow.

32

The Magic processing unit constantly scans the Magic Space to ensure that all processes are

running. If the Magic processing unit identifies a flow message whose status is IN_PROCESS,

but no active worker is handling it, the Magic processing unit identifies this as a problem. This

means that somehow a worker crashed and did not finish its process, and that there is still a

flow message that is only partially handled. As you learned earlier, another worker will be

loaded to replace the worker, but the flow still needs to be cleaned up.

The flow may have various parallel processes all executing together, but all need to be

stopped for the cleanup to begin. The Magic processing unit sends a message to all workers

in the flow execution tree to abort their current tasks.

All of the workers attempt to abort their tasks. If a thread has still not aborted, the cleanup

process will wait until the thread is clear. After all of the workers have aborted their task, the

workers are free to take on new messages and a cleanup of the root flow will be carried out

by the Magic processing unit. The cleanup mechanism invokes the Cleanup recovery flow

defined in the flow properties of the root flow.

It will also release any resources locked by the Lock Resource Service.

If the Max instances property was defined for this flow, the flow will be released so that

another instance of the flow can be invoked.

33

When the cleanup has finished, the recovery process will start according to the recovery

policy defined in the Recover policy of the flow.

If the policy is:

 Abort, no further action is required.
 Restart, the topmost (root) flow is restarted using the original data from the root flow. The

Magic processing unit will change the message status to READY_FOR_USE, and this will
be added to the pool of messages waiting to be handled.

 Save Point, the worker updates the Magic Space with the last Save Point or restarts the
flow if no last Save Point exists or if that step was not reached. This is only relevant for the
root flow’s linear branch. During the recovery process, the Magic processing unit will
update the message with READY_FOR_USE and add the specific step based on the Save
Point details. If the Save Point was defined after parallel workers were invoked, the
parallel processes will not be executed.

 None, there will be no attempt at recovery. Parallel tasks will not be stopped and will
continue running as if there was no crash. Therefore, it is good practice to define a
Recovery policy.

34

Monitoring
Magic xpi 4.x has enhanced monitoring functionality.

Magic xpi 4.1 introduces the Magic Monitor, which was introduced to

make the deployment of your projects easier. You open this monitor via the

Windows Start menu's Magic Monitor shortcut. The Magic Monitor lets you

examine the project and see where you need to make any modifications to

improve performance. For example, you can identify issues caused by

heavy data loads or by a possible shortage of licenses. For the purpose of

this course we will use the pre-V4.1 legacy monitor described below.

When you load the Monitor, the Monitor connects to the Magic Space and then displays the

Projects View.

By parking on a project in the Projects View, such as the SpaceCourse project, you can click

the Start button at the bottom of the screen to start the project. A Start Project option is also

available from the context menu. The Monitor project startup process will be the same as if

you clicked on the Start link of the project. The Startup Mechanism section above describes the

steps. This is different from previous versions. In previous versions, if you launched the

Magic xpi Server from the Start link, you were launching it from your own user credentials but

if you started a server from the Monitor, you were launching the server using the user

credentials of the broker process. In Magic xpi 4.x it is always the GSA that loads the

Magic xpi server.

While the Magic xpi server is loading the project, you may see a warning icon next to the

project’s status. This shows that there are currently no servers handling the project. The
warning icon will appear whenever there are fewer servers running than there should be. For

example, if you defined a different machine in the start.xml file’s <server> section, and that

machine is not available, the warning icon will appear.

From the Projects View you can see:

 The number of flow messages that have been handled by the project.
 The time elapsed since the project was executed.
 The number of servers currently running the

project. If you park on the Servers Running
column, you will get a tooltip showing the list of
servers currently handling this project.

 The number of workers available for this project. Every time you load a server with
workers, those workers are added to the pool.

 The reserved licenses for this project.
 The current number of licenses that are being used by this project.

The Activity Log is opened by pressing the Open button or by right-clicking and selecting the

Open Project option. This is the same view as in previous versions.

35

Advanced Monitoring Console

Magic xpi 4.x introduces the Advanced Monitoring Console, which provides you with

additional runtime information about the Magic xpi project. You open it by selecting the

Advanced Monitoring Console option from the Magic xpi Monitor’s context menu or its View

menu. You can have several Advanced Monitoring Console views open at the same time,

each one monitoring a different project.

The Advanced Monitoring Console consists of three panes: Navigation, Summary, and

Details. The Navigation pane displays the hierarchical structure of the triggers, servers, and

flows in a project. The information displayed in the Summary and Details panes depends on

which hierarchical level you stand on in the Navigation pane.

The Summary pane provides read-only information about the selected project, trigger, server,

or flow, as well as licensing information.

The Details pane provides in-depth runtime information about a specific project, trigger,

server, or flow, and in some cases licensing information.

For detailed information about each of the panes, please see the Magic xpi Help.

The data in the Advanced Monitoring Console is not refreshed

automatically. For this purpose, a Refresh button is available on

the lower left side.

Magic xpi enables you to execute operations on

individual servers. By parking on a specific server node in

the Navigation tree, you can access the context menu and

perform one of the following actions:

 Shutdown – Shut down the current server. A dialog box allows you to set the timeout
period for this to take effect. When you shut down a server, all workers are sent messages
to continue until the timeout or if no messages are available. Each worker that finishes the
flow will terminate and will not take new work. This option is available only when the
selected server is currently running. When you shut down a server, the Projects View will
display the warning icon to indicate that not all servers are running.

 Start – Instruct the server to start, using the Magic server entity settings that were loaded
earlier for this server. This option is available when the selected server has stopped or
failed, or when the server’s status is START_FAILED.

 Clear entry – Delete the server data from the Magic Space. This is also only available
when the selected server has stopped or failed.

36

 Run new instance – Run another instance of this Magic xpi server according to the data
defined in the server entity. (If you access this from the Server node, all of the fields are
blank.) This is useful if you need to add more workers to the pool. By default, this dialog
box displays data from the current server, the one you are parked on. In the example
displayed below, you will see that the Load triggers, Load scheduler, and Load auto-start
fields are not checked. This will add a single instance of the server and add 10 more
workers to the pool, meaning more workers to handle the flow requests.

If you simply run a new server instance, all of the definitions
defined in the original start.xml file are used, including whether to
load the scheduler and triggers.

GigaSpaces User Interface Monitor
The GigaSpaces user interface (UI) includes a monitor, the GigaSpaces Management Center,

which enables you to monitor the grid. In general there is little necessity to access this monitor,

but you should be aware of what is available in the monitor.

You load the monitor using the GigaSpaces UI shortcut link. GigaSpaces Management Center

When the monitor loads you will see three tabs: Hosts, Deployed Processing Units, and Space

Browser. You can find additional information about this monitor in the GigaSpaces

documentation.

37

Hosts Tab

If the grid has started properly, you should see your machine listed in the Hosts tab. This view

shows all of the computers that are a part of this grid as well as the Lookup Locators defined

during installation.

When you select the Development Machine check box during the installation (the default

option), under the name, you should have one Grid Service Agent (GSA), one Grid Service

Container (GSC), one Grid Service Manager (GSM), and one Lookup Service (LUS). In the

Troubleshooting lesson, you’ll find information about what to do if the grid has failed to start

properly.

You can see each component that was loaded and its Process ID (PID) in the operating system,

such as gsa[1708], where 1708 is the PID. This number is useful because:

 It will appear as the java.exe entry’s PID in the Task Manager.
 It is attached at the end of the log to differentiate one log from another. The log files will

be discussed later on in this tutorial.

If you look in the Services pane, the primary GSC is identified by the green icon (P for

primary) and the backup GSC is identified by the blue icon (B for backup). In the image

below, they are both on the same computer, since this was the computer that loaded the

Magic Space.

38

Deployed Processing Units Tab

By clicking the Deployed Processing Units tab, you can see where the partitions are deployed.

This is similar to the information in the Hosts tab.

When you click on the Processing Unit Instances node, in the Details pane, you can see where

each partition is deployed. You can identify which are the primary and backup partitions

according to their colors.

By clicking on the MAGIC_SPACE node, you will receive more

information. In the Details pane, you will also see the name of the

Lookup Group that your cluster belongs to.

By opening that node, you will get even more information. When you

open the Operations node, you will see other nodes. One of these is

called Data Types.

In the Data Types list, you can see all of the system’s data types, including those dealing with
Magic xpi, such as the ServerData data type. The ServerData data type is the entity created

when you start a project. You can park on a data type and select Query from the context

menu to see more information about the data type.

39

Exercise
The goal of this exercise is to be able to monitor the process:

1. Define a start.xml file with 5 workers that do not load triggers, schedulers, or auto-run

tasks. Open the Monitor and start the project. You will notice that all workers are idle.

2. Once the project is running, add a new server instance with 2 workers that loads the

scheduler. You will notice that all 7 workers are now active.

3. Shut down all of the servers and clear the data from the Space.

4. Edit the start.xml file and add another server with 3 workers. This time, load the

scheduler. Click the Start link. You can also run the Magic xpi server on another

machine. You will notice that all 8 workers are active and running.

Summary
In this lesson, you learned how the system recovers from:

 The Magic xpi engine crash.
 A worker crash.
 A work process crash or failure.

You learned about the Monitor and the Advanced Monitoring Console, and how to load new

instances of the server from the Monitor for load balancing purposes. You also learned about

monitoring through the GigaSpaces user interface.

40

41

Deployment

Once you complete your project, you will want to give some thought to how the project is to

be deployed. You can use the initial installation that Magic xpi provides, but there are some

concepts that you should be aware of and settings that you may want to adjust.

This lesson covers various topics including:

 Space deployment
 Memory allocation
 Clustering
 Partitions and containers

Lesson 5

42

Deploying the Magic Space

Remember that deployment is a one-time operation in a production
environment.

Starting the Magic xpi GSA Service

If you select the Install the Grid Service Agent (GSA) as a service check box when installing

Magic xpi, the Magic xpi GSA service should be running on your machine. This is the default

when installing Magic xpi, so you should already have it on your machine.

If you want to check that it’s up and running:

1. On your machine, from the Start menu, click Run.

2. In the Run dialog box, enter services.msc.

3. In the Services dialog box, look for Magic xpi 4.0 GSA. If it has a Started status and

an Automatic startup type, then it’s running.
4. If not, double-click on it and in the Magic xpi 4.0 GSA Properties (Local Computer)

dialog box’s Startup type parameter, select Automatic.

5. Click OK to finish.

When the Magic xpi GSA service starts on a specific machine, it loads the grid locally and

searches the LAN for other grid components with the same Lookup Locator names. If any such

components are found, the local grid is considered to be part of that Lookup Locator. In this

way, a single unified grid is established in the network.

43

It’s important to remember that the Magic xpi engines run under the user
defined for the GSA service and not by the logged in user. By default, the

user defined for the service is the Local System account as shown in the

image below. For running Magic xpi on a single machine, this is usually

fine. However, on a clustered environment, the service should run as a

user who has privileges to access network resources.

Magicxpi_sla.xml

Once the grid is up and running, the Magic xpi GSA service automatically deploys the Magic

Space on the grid. How the Magic Space is deployed on the grid, such as how many

partitions and backups to use, is defined (by default) in the magicxpi_sla.xml configuration

file, which is located at <Magic xpi 4.x installation>\config.

By default, this file defines two partitions with one backup each (four in total), and with a
restriction that a primary partition and its backup partition cannot run under the same process.

The most common SLA settings in the magicxpi_sla.xml file are:

 cluster-schema – This should always be set to partitioned-sync2backup, which means that
data can be in partitions and each partition can have a backup that is synchronized with
it.

 number-of-instances – This refers to the number of partitions, meaning instances of the
Magic processing unit, which will be loaded. The default is 1. If you have a lot of data in
memory, you may need to increase this number.

44

 number-of-backups – Here you define the number of backup partitions for each primary
partition. During development you can decide that you do not need a backup and you can
set this value to 0. If the number-of-instances="2" and the number-of-backups="1", there
will be four instances of the Magic processing unit.

 max-instances-per-vm – This defines how many instances of the same partition will be
deployed in the same JVM (GSC), that is, under the same process. If you left the default as
is, max-instances-per-vm="1", the primary and backup instances of the same partition will
not be deployed on the same GSC.

 max-instances-per-machine – This defines how many instances of the same partition will be
deployed on the same machine. When this is set to 1, you ensure that a primary partition
and its backup(s) cannot be provisioned to the same machine. Setting this to 1 should be
restricted to a cluster containing a minimum of three machines. Then, if one of the
machines fails, the lost partitions will move to the third machine. Or, it can also be used in
a two machine cluster, but there is a risk having primary partitions with no backup until the
second machine is back up and running.

Magicxpi-gs-agent.bat

The number of Grid Service Containers (GSCs) is defined in the magicxpi-gs-agent.bat file,

which is located in the <Magic xpi installation>\ Gigaspaces\bin directory.

In magicxpi-gs-agent.bat file, in the command starting with call gs-agent.bat, you should

define the number of GSCs to match the number of required partitions by modifying the

number next to the gsa.gsc parameter. To set the number of GSCs that will be loaded:

1. Open the magicxpi-gs-agent.bat file in a text editor, such as Notepad.

2. In the call gs-agent.bat line, set the gsa.gsc parameter to the number of required

GSCs, such gsa.gs 2. In this example, the value 2 indicates the number of GSCs to

load.

Partitions and Containers
Each Space partition runs within the Grid Service Container (GSC). If both the primary and

the backup partitions exist within the same container, both will end if the GSC process exits

abnormally. Therefore, if you decide that you want a backup you will need more than one

GSC. In general, you need to load enough GSCs to host the number of partitions that you

need, taking into account the backups.

You configure the GSC and the backups in the two files that were just discussed:

 magicxpi-gs-agent.bat
 magicxpi_sla.xml

45

Here are some examples of the magicxpi-sla.xml file:

1. For single partitions with two backups, and primary and backup partitions on separate

GSCs, you’ll set the following in the magicxpi_sla.xml file::

 <os-sla:sla cluster-schema="partitioned-sync2backup" number-of-instances="1"

number-of-backups="2" max-instances-per-vm="1">

The above example requires at least three containers on a single machine. Each container will

hold a single partition.

Using two backups is not recommended. This example is brought here to

illustrate how the required number of GSCs is calculated.

2. For two partitions with one backup each, and primary and backup partitions on

separate GSCs, you’ll set the following in the magicxpi_sla.xml file:

 <os-sla:sla cluster-schema="partitioned-sync2backup" number-of-instances="2"

number-of-backups="1" max-instances-per-vm="1">

The above example requires at least two containers on a single machine. Each container will

hold two partitions.

3. For two partitions with one backup, and primary and backup partitions on separate

machines, you’ll set the following in the magicxpi_sla.xml file:

 <os-sla:sla cluster-schema="partitioned-sync2backup" number-of-instances="2"

number-of-backups="1" max-instances-per-machine ="1">

The above example requires at least two machines with at least one container on each

machine. In each machine, the container will hold two partitions. If there is a cluster of two

machines, and one of the machines fails, the Magic Space deployment will be incomplete

(compromised) and no backup partition will replace the lost backup partitions until the failed

machine starts up again.

46

Automatically Starting Projects

You can create a file called projectsStartup.xml file that tells Magic xpi to automatically start

your projects and servers when the Magic xpi service deploys the Magic Space.

The structure of the projectsStartup.xml is identical to the structure of the start.xml created

under each project.

1. Make a copy of the start.xml file or the projectsStartup.xml.example file, which is

located in the config folder.

2. Make the changes that you want and save it to the config folder.

The startup sequence of the grid will then be as follows:

1. The Grid Service Agent (GSA) is started as a service on each application server that is

part of the grid. The Grid Service Agent starts the core grid infrastructure to connect all

application servers together.

2. The first GSA that starts successfully is responsible for deploying the Magic Space. This

Magic Space contains all Magic-related objects that are shared across the grid.

3. The same GSA also deploys the projectsStartup.xml information into the Magic Space

to enable projects to start automatically.

4. All GSAs in the grid query the projectsStartup.xml information in the Magic Space,

and load the Magic xpi servers as defined.

5. For each project that is deployed, the first Magic xpi server that starts is responsible for

initiating the project objects in the Magic Space to enable the projects to start.

6. For each project, a start.xml file in the same format is created automatically in the

project’s folder.

Spreading Out the Partitions

When the Magic Space is deployed, the Grid Service Manager (GSM) attempts to spread the

partitions amongst the available containers (GSCs) in such a way that a single server failure

will not affect the Magic Space operation and will not cause any data loss. This provisioning

process is automatic, but once complete it will not rearrange itself.

47

If only one machine was running during the Magic Space deployment process, and there was

no restriction in the SLA definition related to a single machine (max-instances-per-machine),

this machine will hold all the partitions. Containers starting on other machines after the

deployment was complete will not hold any Space partitions, and the single machine that is

currently running the Magic Space is now considered a single point-of-failure.

When you have more than one machine that is part of the grid, you will want to have control

over when the Magic Space is deployed. When the Grid Service Agent (GSA) loads, and the

machine becomes a part of the grid, that machine will not host a part of the Magic Space if

there is already a Magic Space deployed on the grid.

To spread the partitions over multiple machines when one machines holds all of the partitions,

you have the following options:

1. Magic xpi can automatically monitor and rebalance the single points of failure of both

primary and backup partitions running on the same host. Periodic checks are made to

determine whether a rebalance of a partition's instance is required. This mechanism is

controlled by the following two properties that are defined in the mgdeploy.xml file

(located in the <Magic xpi installation>\GigaSpaces\config\gsa directory):

 rebalance-partitions - When this property is set to true (default), or when it does not

exist, the rebalancing mechanism is activated.

 rebalance-interval - This property defines the intervals between rebalance checks. If

the property does not exist, the default is 5 minutes.

These properties appear in the mgdeploy.xml file as follows:

<argument>-rebalance-partitions</argument>

<argument>true</argument>

<argument>-rebalance-interval</argument>

<argument>5</argument>

2. You can configure all of the services to avoid automatic Magic Space deployment and

run the deployment batch once the whole grid is up, by first loading all of the GSAs

and then deploying the Magic Space manually. You do this as follows.

a. In the magicxpi-gs-agent.bat file, set the gsa.mgdeploy entry to 0

(gsa.mgdeploy 0). Do this on all computers in the grid. Now, when you load the

grid, all machines will be a part of the grid but the Magic Space will not be

deployed.

b. Deploy the Magic Space by running the GigaSpaces Deployment shortcut or the

<Magic xpi installation>\Gigaspaces\bin\Magicxpi_deploy.bat file.

48

3. You can manually rearrange the partitions from the GigaSpaces UI. You do this as

follows:

a. Open the Gigaspaces UI Hosts tab.

b. Stand on the Hosts entry at the top of the hierarchy tree on the left.

c. In the Services pane, on the right side of the Gigaspaces UI screen, you will see a

tree of containers and partitions. You can now select a partition (either primary or

backup) and drag it to a different container, as shown in the following image.

4. You can restart the backup GSC and GigaSpaces will provision the grid. You do this

as follows:

a. Park on the GSC node of the backup partition.

b. From the context menu, select Restart.

GigaSpaces will attempt to place the backup container on the second computer, as you can

see from the image below. This provides redundancy for your application.

If the secondary machine is not available, GigaSpaces will create the backup partition on the

49

current machine. When the secondary machine becomes available again, GigaSpaces may

not automatically reposition the backup on the secondary computer. You may need to perform

the operation manually.

5. You can use the max-instances-per-machine restriction in the SLA. This method should

be restricted to a cluster of at least three machines, which ensures that at least two

machines in the grid will run the Space partitions.

a. In the magicxpi_sla.xml file, set the max-instances-per-machine to 1 as explained

earlier in this lesson.

b. When the automatic deployment process starts, it will not be completed until at

least two machines are hosting the Space partitions.

Memory Allocation
Each Magic xpi and grid component uses memory. How you define the memory to allocate to

each component depends on what your project does. Memory allocation for the various

GigaSpaces entities is determined in the magicxpi-gs-agent.bat file.

Grid Service Container (GSC)

When a trigger or a worker posts a flow invocation message into the Space, they are placing

the message along with the message payload into one of the space partitions that is hosted on

a GSC (which is a Java process). Therefore if you have many triggers, polling or external, that

place heavy BLOBs into the Space, the GSC memory must be able to contain it.

If you encounter any memory-related issues with the GSC, consider changing the size to at

least 512MB. In the magicxpi-gs-agent.bat file, there is a gigaSpaces Memory related settings

section. Within that section, find the set GSC_JAVA_OPTIONS= line (marked below in red).

Change the number after the letters Xmx.

50

So in this example, you would change Xmx128m to Xmx512m.

The GSA, GSM, and LUS entities have quite a small memory footprint, so you can leave these

settings as is.

Clustering
In Space-based architecture, as you learned in the previous lesson, the Magic Space can

reside on several computers that are viewed as a single logical unit. A cluster can be seen as

a single "large" Space.

Space clustering defines the number of Space partitions, the number of partition backups, and

the way they are spread across the available grid containers (GSCs).

Space clustering is governed by the SLA definitions set in the magicxpi_sla.xml file. This

means that the grid will always try to maintain the defined clustering when deploying the

Magic Space.

Adding Multiple Server Instances

To provide more resources for your project, you often want to run the same project on more

than one server and in some cases you want to run the same project on different machines.

One of the methods to run more than one instance of the same server on a specific computer

is simply to update the NumberOfInstances node in the start.xml configuration file. Remember

that only updating the configuration file does not have any effect on what is already running.

You need to click the link again. This will load the additional entities that you defined

(in the NumberOfInstances node) into the Magic Space.

For example, if you had the NumberOfInstances node set to 1 the first time you clicked the

Start link and changed it to 3, when you click the Start link again, you will see 4 instances of

the server running in the Advanced Monitoring Console. Every time you click the Start link, the

51

entire configuration file will be read and loaded into the Space, not just a specific section.

To run the same project on different machines (multiple instances), you simply duplicate the
<server> section in the start.xml file. In this case, you need to ensure that:

 The Server host that is defined in the server node is valid.
 The ProjectsDirPath value points to a path that is accessible on the second server. You can

do this by either having the project on a network path that is accessible to all, or you can
copy the project to the second server and update the ProjectsDirPath node.

To define a specific server that will listen for triggers, you can duplicate the
<server> section with <Triggers load="true"/> for one server and for the
other servers you can have <Triggers load="false"/>.

Installing the Server License

In Magic xpi 4.x clustered environments, you only need a single host locked license for the

entire cluster.

Each project needs to load with access to the license.dat file:

1. Copy the license file that you received after purchase, and copy it to all of the servers,

or to the shared location. It is good practice to put the license file on a path where all

servers will have access to it so that each server does not need its own license file

2. Modify the Magic.ini file with the license file location by updating the [MAGIC_ENV]

LicenseFile entry to point to the shared license file.

For example: LicenseFile =\\10.1.1.6\licenses\License.dat

3. Make sure that your project’s ifs.ini file is configured with the production license, such

as [MAGIC_ENV]LicenseName = IBPRSRVI for a Windows machine.

Aside from the server hosting the license according to the license’s
HOSTID flag, any other server that loads will simply add a license
entry into the Magic Space but will not add an actual license. The
license count will therefore be zero.

52

Projects Folder Location
Deploying a project involves copying each project’s folder from the development/staging
environment to the designated shared folder location.

It is good practice to have projects that are shared by all servers
on a shared location such as \\SPACECOURSE-WIN7\projects\.

Although a shared folder is potentially a single point-of-failure, with today’s storage systems,
this type of resource is usually highly redundant by itself.

An alternative, less recommended approach, is to deploy a copy of the Magic xpi projects to

each of the application servers. This eliminates even the theoretical single point-of-failure, but

at the expense of high maintenance costs and complexity.

Installation Settings
On each application server, when you run the setup program (setup.exe) from the installation

media files, there are certain settings to be aware of.

1. When installing the first database server, select Now. Enter your database server and

the Magic xpi administrator DB user.

2. For all other database servers, select Later.

3. On only one of the hosts in the cluster, select the Install the Magic Monitor Services

check box. This will install the Magic Monitor services on the host machine.

4. On all application server setups, clear the Install Web Service Framework check box.

You will install this separately on the front-end Web server.

5. In the new Magic Service Configuration screen, for all of the application servers:

a. Select the Install the Grid Service Agent (GSA) as a service check box.

b. Clear the Development Machine check box. This needs to be cleared to deploy the

Magic Space in a clustered environment.

c. In the Use the following locators (Unicast) field, enter the addresses (comma

separated) of the application servers that you designated as LUS servers.

d. In the Number of GSCs field, enter the number of GSCs that you want to deploy.

This should be set to at least 2.

e. In the GSC memory allocation field, enter at least 512.

f. On the two application servers that you designed as LUS servers (the same two

defined as the locators), select the Run the LUS check box.

Note: Make sure that you only select this check box for two of the application

servers.

g. In the Number of partitions field, enter the number of partitions that you want your

Magic Space to contain, such as 2.

h. Select the Partition backup check box. It is always recommended to work with a

backup.

53

6. For all of your machines, on the last screen, select the Start the Magic xpi Services

check box. This will start the Magic Monitor Display Server, the Magic Monitor Web

Server, and the Magic 4.x GSA.

For additional information about setting up a clustered information, such as

permissions and network access, please see the Magic xpi 4 x - Advanced

Deployment Guide.pdf file included with the Magic xpi installation. This

information is also available on Magic Software Enterprises’ DevNet at:
http://devnet.magicsoftware.com/en/library?book=en/Magicxpi4/&page

=Magic_xpi_4.x_Deployment.htm.

Configuring Multiple Network Cards (Optional)

If your application servers have multiple network cards, configure the use of a specific card for

the Magic xpi 4.x server, as follows:

1. Modify the NIC_ADDR value found in the <Magic xpi

installation>\GigaSpaces\bin\magicxpi-setenv.bat file to hold either the IP assigned

to this network card or the name of the network card itself.

For example: NIC_ADDR=10.1.1.11 or NIC_ADDR="#eth0:ip#", where eth0 is the

name of the network card.

Tip: You can find the network cards’ IPs and names by running the following script:
<Magic xpi installation folder>\GigaSpaces\bin\platform-info.bat –verbose

and look for the IPs and names in the Network Interfaces Information section.

2. Add the same NIC_ADDR value to the Magic.ini file’s jvm_args section:

-Djava.rmi.server.hostname=<your network card IP address here>

 The host name or IP address should not be surrounded by quotation marks.

http://devnet.magicsoftware.com/en/library?book=en/Magicxpi4/&page=Magic_xpi_4.x_Deployment.htm
http://devnet.magicsoftware.com/en/library?book=en/Magicxpi4/&page=Magic_xpi_4.x_Deployment.htm

54

Starting Projects from the Command Line
This section is relevant if you want to change the default of the location from where you want

to start the project.

Projects can be started from the command line. To start a project from the command line:

1. Go the link in the project’s folder.
2. Right-click and select the Properties option.

3. Find the Target field. The text in the field will look something like this:

"D:\Magic xpi\Magic xpi 4 GS 11_12\MgxpiCmdl.bat" start-servers -startup-config-

file "D:\Magic xpi\Magic xpi 4 GS 11_12\projects\Project1\start.xml" -Space-name

"MAGIC_SPACE" -group "Magicxpi-4.0.0_AVIW-7-LP" -locators ""

4. This path points to a specific start.xml file that is residing under the project. Change the

path to load a different start.xml file whose configurations can load several projects.

5. Click OK.

Starting and Stopping Projects from the Monitor
This section is relevant if you want to change the default of the location from where you want

to start or stop the project.

The Monitor shows the projects based on the [MAGIC_IBOLT]MPSProjects entry in the ifm.ini

file, and runs the projects based on the %projects% environment variable. Follow these steps:

1. Modify the [MAGIC_IBOLT]MPSProjects entry to point to the shared drive, such as

\\10.1.1.6\projects.

2. In the ifm.ini file, create a [MAGIC_LOGICAL_NAMES]projects entry and point to the

same shared drive.

3. Restart the Monitor to apply the settings.

For the new Magic Monitor, this is done using the ApplicationsList.xml file. For more

information, see the Magic xpi Help file.

55

Exercise
1. Change the memory allocation of the GSC to 512 MB.

2. Try to manually rearrange the partitions from the GigaSpaces UI.

Summary
In this lesson, you learned how to control the GigaSpaces installation, which was installed

during the Magic xpi installation process.

You learned about text files that are responsible for the way that GigaSpaces loads:

 The magicxpi-setenv.bat file found at <Magic xpi installation>\GigaSpaces\bin.
 The magicxpi-gs-agent.bat file found at <Magic xpi installation>\GigaSpaces\bin.
 The magicxpi-sla.xml file found at <Magic xpi installation>\config.

With these files you can control:

 The memory consumed by each component.
 How to deploy the Magic Space manually.
 How to define Space clustering (backups and partitions).

56

57

Troubleshooting

Troubleshooting is part of the life cycle of any project. It’s important to have an understanding

of the potential causes of problems and how to solve them.

This lesson covers various topics including:

 GigaSpaces UI
 Log files
 Project startup issues

Lesson 6

58

GigaSpaces UI Troubleshooting
As was described earlier, if the grid started properly, you should see a grid listed in the Hosts

tab and the grid components with the Lookup Locator defined during the installation.

You may encounter one of the following issues:

 You will not see the grid listed in the Hosts tab. In the example above, you wouldn’t see
debbies-7. This means that the grid did not deploy.

 You will not see the gsa, gsc, gsm and lus entries under the grid name. This means that
one or more of the Grid components did not load properly.

The first thing you should do when the grid is not working properly

is to check that the LOOKUPLOCATORS value in the magicxpi-

setenv.bat file is set correctly.

If you encounter one of these issues, you can also check the following:

 Try stopping the Magic xpi GSA service, waiting for all grid processes (if they exist) to
terminate, and restarting the Magic xpi GSA service.

 If you did not select the Install the Grid Service Agent (GSA) as a service check box during
installation, the grid will not deploy. Run the installService.bat file from OS_Service\scripts
to install the GSA. With some operating systems, such as Windows 7 and above, you
need to run this command using administrator credentials.

 If you did not select the Run the LUS check box during installation, the grid will not deploy.
Define dsa.lus 1in the magicxpi-gs-agent.bat file.

59

 Click on one of the running components and you will see the log for that component. Any
errors will be seen in the log, as shown in the image below:

 For all of the application servers, if your machine is running multiple network interfaces,
make sure that the NIC_ADDR value (in the <Magic xpi
installation>\GigaSpaces\bin\magicxpi-setenv.bat file) is set to hold either the IP
assigned to the network card or the name of the network card itself. Then, add the
NIC_ADDR value to the magic.ini file’s jvm_args section:
-Djava.rmi.server.hostname=<your network card IP address here>
Note: The host name or IP address should not be surrounded by quotation marks.

 When working in a clustered environment, if the grid entities are not available in the
GigaSpaces UI, check that the firewall is not blocking the ports used by GigaSpaces.
There are two settings that control the ports:

 The Discovery port, which should be opened in the firewall.
 The range of LRMI ports, which should be set to a fixed range and also opened in

the firewall.

Additional information about the ports can be found in the Magic xpi 4 x -
Advanced Deployment Guide.pdf file in the Magic xpi help folder.

60

Log Files
Information about errors that occurred during runtime is logged to several log files and in

several locations.

Magic xpi uses the log4j infrastructure for logging and the logging configuration is set in the

<Magic xpi installation>/java/classes/log4j.xml file. The logs defined in the log4j.xml file

are written by default to the <Magic xpi installation>/logs/java folder.

The logging of code related to GigaSpaces logs (general_[PID].log , magicxpi_[PID].log and

magicxpi-external_[PID].log), the logging level can be changed in the log4j.xml while running

and does not require an application restart.

You’ll find a log file specific to the GigaSpaces infrastructure in the
<Magic xpi installation>/GigaSpaces/Logs folder.

Project Startup Troubleshooting
The following describe scenarios that might require troubleshooting during the startup process.

No Server in the Monitor

After starting a server from the Monitor or from the Start link, the server entry should appear in

the Advanced Monitoring Console. If it does not appear, then no server entity (ServerData

object) was created. To see why there was a problem creating an entity in the Magic Space

or accessing the grid, check the mgxpicmdl.log file on the machine where you requested the

operation, and not on the remote machine.

Server Status Remains START_REQUESTED

After selecting Start from the link or from the Monitor, you initially receive a

START_REQUESTED status.

This is a temporary status and you expect that the status will change to RUNNING.

In the image above, the host machine (SPACECOURSEWIN7) has a status of

START_REQUESTED and did not receive a Process ID, which you can see in the Process ID

column where the value is set to null. To try and figure out why this happened, you need to

find the relevant log. Remember that all logs have the name of the log and the process ID

number:

61

1. In the <Magic xpi installation directory>\logs and <Magic xpi installation

directory>\logs\java folders, try to delete all of the logs. The logs that you cannot

delete are the ones currently being accessed by processes. These logs are the ones

that you want to have a look it.

2. Load the GigaSpaces UI by clicking the link on the desktop or via the Start menu.

3. Look for the PID of the primary GSC, as in the image to

the right. In this case, the Process ID is 2312.

4. Open the log: magicxpi_<PID>.log located in the

<Magic xpi installation directory>\logs\java folder (in

this example, magicxpi_2312.log). You will notice that

the Magic processing unit did not find the GSA on the

host machine:

There are a number of reasons that this may happen, such as:

 This scenario may be valid, since you may have decided that the host machine will only
be available at peak hours. In this case, you can simply wait until the machine becomes
available.

 There is a problem with the host machine.
 There is a problem with network access to that machine. In other words, the machine is not

available.
 There is a problem with the naming. The names of the host in the start.xml file may not

match the name seen by the grid because of Domain Name System (DNS) resolution. Use
the IP address of the machine instead of the name in the start.xml file to solve this issue.

Server Status Becomes START_IN_PROGRESS

The Magic processing unit has found the remote computer, and the GSA has managed to run

the Magic xpi server with the parameters. The Magic processing unit updates the server status

with START_IN_PROGRESS.

After an internal timeout that involves a number of checks to see if the serverdata entity’s status
is still START_IN_PROGRESS, the Magic xpi server could not connect to the Magic Space and

the Magic processing unit then updates the server’s status as START_FAILED.

62

There are a number of reasons that this might happen, such as:

 A license problem.
 One of the parameters in the command line is incorrect, such as the project name or path.
 The user does not have access to the shared drive where the project exists. Remember that

the Magic processing unit requests that the GSA on a remote machine load the Magic xpi
server. Therefore, the Magic xpi server loads with the permissions of the GSA and not
necessarily the permissions of the current user. The current user may have access to the
project on the shared folder, as well as the license, but the user assigned to the GSA
process may not have such access.

The errors above may appear in the ifs.log file. It is good practice to check in the ifs.log file

for relevant errors.

The following are indications that there is a permission issue in accessing

the project’s folder:

 You do not have an ifs.log file.

 In the Windows Task Manager, the MgxpiServer.exe process

consumes a small amount of memory (about 18MB).

Server Status Becomes SERVER_INITIALIZING

This is a temporary status in which the GSA has managed to run the Magic xpi server. The

Magic xpi server updates the server status as SERVER_INITIALIZING.

The Magic processing unit checks the server status to see if it has been updated to RUNNING.

If it is not RUNNING, then after an internal timeout the Magic processing unit will update the

server’s status to START_FAILED. In some cases, this means that the actual Magic xpi server

application and the project metadata were not loaded into the Magic xpi process. In other

cases, such as database connectivity issues, this means that the project was created in the

Space, but the engine will terminate later because of the database issue.

This occurs when the Magic xpi server could not access the database.

1. Open the <Magic xpi installation directory>\logs folder on the machine registered in

the start.xml (in this case, SPACECOURSEWIN7), and look for the log for the project,

such as SpaceCourse_error.log.

2. Open the log and see if there is an error there. If there was no access to the database,

you might see an error such as: Failed to open, data source: ifs_ods.

63

Exercise
1. Find the backup partition and manually kill the process. Check that GigaSpaces

manages to recreate a partition.

2. Load a server, from the link or by any other method.

3. Start a new server or instance with a non-existing machine.

4. Check the logs to find the reason that the server will not load.

5. Work with a colleague or a secondary computer:

a. Create an environment where there is a Lookup Service (LUS) running on each of

the machines (this is the default).

b. Make sure that the Lookup Locator value contains the IPs of both machines running

the LUS.

c. Configure only one of the machines to deploy the Space.

d. Start servers on both machines where only one of them loads the Scheduler.

64

Summary
In this lesson, you learned how to troubleshoot your project. You learned how to use the

GigaSpaces UI and how to fetch the process ID (PID) of each component to assist you in

finding the relevant log that you may need.

Remember that before troubleshooting it is a good idea to delete older logs so that you can

quickly find the log that you are looking for.

You learned how to find the errors that prevented the server from being updated with the

RUNNING status.

65

Glossary

Magic xpi Space-related Terminology
This section describes the new Space-related terminology, some of which was mentioned in

the previous lesson.

Magic Processing Unit

The Magic processing unit runs in the Magic Space and has direct access to all the data in the

Magic Space. The Magic xpi processing unit performs administrative tasks such as the startup

of engines, monitoring, and recovery. All of the Magic xpi processing units together form the

logical Space.

Magic Space

The Magic Space stores data objects in memory (similar to a database instance) and runs on

the data grid. Magic xpi uses a single Space for running multiple projects. For redundancy

and scalability, data and business logic in the Magic Space are replicated and partitioned

across all machines participating in the data grid. This ensures continuous service even if there

is a problem such as machine or software failure.

Worker

In Magic xpi, the workers are capable of executing any integration project logic. The worker

is a generic thread that knows how to run any flow in the project. It performs the flow steps.

These workers lie in wait for flow invocation requests, sometimes called messages. Once a

flow invocation request is created, a flow worker executes the requested flow.

Work Process

A work process refers to the execution tree of a root flow, or a set of flows, comprising a

single business transaction. The role of a work process is to process requests.

Magic xpi Project

The Magic xpi project is software composed of multiple server processes that execute

Magic xpi 4.x integration project logic. Each Magic xpi server process, known as the engine,

consists of multiple threads or workers. Each worker is capable of executing any integration

project logic. It is possible to run a few servers for every project. Servers can be added and

removed on demand while the Magic xpi project is running.

66

Space Partition

The Space partition contains the Magic xpi processing unit and an embedded space. Data

loaded into the space is divided amongst the partitions. The partitions allow large amounts of

data to be stored in a single Magic Space process memory with each Space partition

containing a subset of the information. The combination of all the Space partitions within the

same cluster creates the full set of information.

In-Memory Data Grid Terminology

Grid Service Agent (GSA)

The Grid Service Agent (GSA) runs on a specific machine and is responsible for adding that

machine to the grid. Once the grid is up and running, the GSA will deploy the Magic

processing unit and the Magic Space. It is also responsible for making sure that the processing

units running in the grid are accessible, meaning that they have not crashed. If the processing

unit is not running, the GSA restarts it automatically.

Grid Service Container (GSC)

The Grid Service Container (GSC) is a container that hosts processing units or Space

partitions. It also hosts the data that this processing unit can access. It is common to start

several GSCs on the same physical machine, depending on the machine CPU and memory

resources. The GSC is normally loaded by the GSA, although it can be loaded on its own.

Remember, however, that if it is loaded by the GSA, the GSA is responsible for ensuring that it

is always available.

Grid Service Manager (GSM)

The Grid Service Manager (GSM) is the service that manages the Grid Service Containers.

The GSM deploys processing units to the grid, and can also undeploy the processing units.

The GSM monitors the processing units running within each GSC. For each processing unit, a

fault detection mechanism is maintained by periodically pinging the processing unit. After

multiple failures, the GSM tries to remove the instance and re-instantiate it on another GSC.

The GSM is normally loaded by the Grid Service Agent, although it can be loaded on its own.

Lookup Service (LUS)

The Lookup Service (LUS) is a registry that contains information as to where each loaded

component is actually situated. As an example, the LUS knows which computer a specific

processing unit is running on. When a GSA, GSM, GSC, or processing unit loads, it registers

itself with the LUS. Clients accessing the grid can find the information they are looking for by

first accessing the LUS.

	Lifting Off into Space-based Architecture with Magic xpi 4.x
	Introduction
	About Magic xpi 4.x’s Space-based Architecture
	About the Course
	Course Prerequisites

	How to Use This Guide
	Exercises
	Course Materials
	Installing the Course Materials
	Magic xpi 4.x Licensing
	Upgrading from Previous Versions

	Benefits of Space-based Architecture
	Tier-based Architecture
	Magic xpi 4.x Architecture at a Glance
	In-Memory Data Grid
	Replication
	Clustering

	Summary

	Magic xpi Architecture with GigaSpaces
	Magic xpi’s Architecture
	Workers
	Triggers
	Polling Triggers
	External Triggers

	In-Memory Data Grid Terminology
	Summary

	Project Execution
	Startup Mechanism
	Start.xml File
	Step 1: Starting a Project
	Step 2: Magic Server Entity Created
	Steps 3 and 4: Magic Processing Unit
	Step 5: Starting the Magic xpi Server
	Step 6: Server Up and Running
	Startup Failed

	Workers and Triggers
	Workers
	Triggers
	Polling Triggers
	External Triggers
	Trigger Buffer
	After the Main Flow Is Completed

	Variables
	Licensing
	Reserving License Threads for a Project
	Host Locked License
	License for Clustered Environments
	Different Serial Numbers
	Refreshing a License

	Summary

	Recovery and Monitoring
	Recovery
	Magic xpi Server Recovery
	Worker Recovery
	Work Process Recovery

	Monitoring
	Advanced Monitoring Console

	GigaSpaces User Interface Monitor
	Hosts Tab
	Deployed Processing Units Tab

	Exercise
	Summary

	Deployment
	Deploying the Magic Space
	Starting the Magic xpi GSA Service
	Magicxpi_sla.xml
	Magicxpi-gs-agent.bat

	Partitions and Containers
	Automatically Starting Projects
	Spreading Out the Partitions

	Memory Allocation
	Grid Service Container (GSC)

	Clustering
	Adding Multiple Server Instances
	Installing the Server License
	Projects Folder Location
	Installation Settings
	Configuring Multiple Network Cards (Optional)

	Starting Projects from the Command Line
	Starting and Stopping Projects from the Monitor
	Exercise
	Summary

	Troubleshooting
	GigaSpaces UI Troubleshooting
	Log Files
	Project Startup Troubleshooting
	No Server in the Monitor
	Server Status Remains START_REQUESTED
	Server Status Becomes START_IN_PROGRESS
	Server Status Becomes SERVER_INITIALIZING

	Exercise
	Summary

	Glossary
	Magic xpi Space-related Terminology
	Magic Processing Unit
	Magic Space
	Worker
	Work Process
	Magic xpi Project
	Space Partition

	In-Memory Data Grid Terminology
	Grid Service Agent (GSA)
	Grid Service Container (GSC)
	Grid Service Manager (GSM)
	Lookup Service (LUS)

