

Getting Started with Magic® xpi 4.5

 Self-Paced Tutorial

Book ID: UTGSWMI45

Edition: 1.0, July 2016

Course ID: UCOGSXPI45

Magic University Official Courseware

The information in this manual/document is subject to change without prior notice and does not represent a commitment on

the part of Magic Software Enterprises Ltd.

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically

disclaims any implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in

accordance with the terms and conditions of the license agreement. It is against the law to copy the software on any medium

except as specifically allowed in the license agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording or information recording and retrieval systems, for any purpose other than the

purchaser’s personal use, without the prior express written permission of Magic Software Enterprises Ltd.

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of

Magic Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a

completely fictitious scenario or scenarios and are designed solely to document the use of Magic xpa.

Magic™ is a trademark of Magic Software Enterprises Ltd.

Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software Inc.

IBM®, Topview™, System i5®/System i®/IBM i®, pSeries®, xSeries®, RISC System/6000®, DB2®, WebSphere®, Domino®, and

Lotus Notes® are trademarks or registered trademarks of IBM Corporation.

Microsoft®, FrontPage®, Windows™, WindowsNT™, ActiveX™, Exchange™, Dynamics® AX, Dynamics® CRM, SharePoint®,

Excel®, and Word® are trademarks or registered trademarks of Microsoft Corporation.

Oracle®, JD Edwards EnterpriseOne®, JD Edwards World®, and OC4J® are registered trademarks of the Oracle Corporation

and/or its affiliates.

Google Calendar™ and Google Drive™ are trademarks of Google Inc.

Salesforce® is a registered trademark of salesforce.com Inc.

SAP® Business One and SAP® R/3® are registered trademarks of SAP AG in Germany and in several other countries.

SugarCRM is a trademark of SugarCRM in the United States, the European Union and other countries.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of UNIX System Laboratories.

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation.

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems Inc.

HP-UX® is a registered trademark of the Hewlett-Packard Company.

Red Hat® is a registered trademark of Red Hat Inc.

WebLogic® is a registered trademark of BEA Systems.

Interstage® is a registered trademark of the Fujitsu Software Corporation.

JBoss™ is a trademark of JBoss Inc.

Systinet™ is a trademark of Systinet Corporation.

GigaSpaces, GigaSpaces eXtreme Application Platform (XAP), GigaSpaces eXtreme Application Platform Enterprise Data Grid

(XAP EDG), GigaSpaces Enterprise Application Grid, GigaSpaces Platform, and GigaSpaces, are trademarks or registered

trademarks of GigaSpaces Technologies.

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc.

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details

This product uses icons created by Axialis IconWorkShop™ (http://www.axialis.com/free/icons)

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University

(http://www.cmu.edu/computing/). Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark

Cooper.

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology Inc All rights reserved.

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved.

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All

Rights Reserved.

All other product names are trademarks or registered trademarks of their respective holders.

Gett ing Star ted w ith Magic xpi 4 .5 , edit ion 1 .0

July 2016

Copyright © 2013-2016 by Magic Software Enterprises Ltd. All rights reserved.

Contents

About the Course ... 1

Course Prerequisites ... 2

How to Use This Tutorial ... 3

Exercises ... 3

Course Material ... 3

Magic xpi Overview .. 5

Introduction ... 6

Magic xpi Studio ... 7

Components .. 8

Deploying Your Project ... 10

Version Control .. 11

Tools... 12

Summary ... 13

Magic xpi Methodology ... 15

Identifying Business Processes .. 16

Identifying Participating Applications .. 16

Identifying Project Resources .. 17

Identifying Project Services .. 18

Designing Flows ... 19

Testing and Deploying .. 19

Summary ... 20

Magic xpi Project .. 21

Starting the Magic xpi GSA Service ... 22

Creating a Project .. 22

Environment Variables .. 25

Project Properties ... 27

Course Project ... 28

Summary ... 30

Resources ... 31

Advantages ... 32

Resource Types .. 32

Exercise .. 36

Summary ... 36

Scan for New Requests .. 37

Flow Editor .. 38

Defining a Magic xpi Flow .. 39

Introduction to Variables ... 42

Flow Components .. 43

Directory Scanner Component ... 44

Using a Component ... 45

Exercise .. 52

Summary ... 54

Flow Orchestration .. 55

Variables .. 56

Environment Variables .. 57

Project-Specific Variables .. 59

Flow Logic ... 62

Expression Editor ... 66

Exercise .. 69

Summary ... 69

Checking Customer Existence ... 71

Data Mapper ... 72

Checking for Customer Existence ... 80

Exercise .. 86

Summary ... 86

The Runtime Environment .. 87

The Executable File ... 88

Executing a Project ... 90

Magic Monitor ... 91

Exercise .. 95

Summary ... 95

Testing Your Project ... 97

Magic xpi Checker ... 98

Magic xpi Debugger .. 100

Adding User Messages ... 106

Exercise .. 108

Summary ... 108

Item Validity Check .. 109

Flow Data Utility .. 110

Operational Data Storage ... 113

Check Item Flow .. 116

Calling the Check Item Flow for Each Item .. 119

Exercise .. 121

Summary ... 121

Services.. 123

Services Section ... 124

HTTP Endpoints .. 127

Exercise .. 129

Summary ... 129

Checking Request Status ... 131

Intervention Process .. 132

Magic xpi Triggers ... 133

Trigger Types ... 134

HTTP Triggers .. 135

HTML Response Page ... 138

Templates .. 141

Exercise .. 143

Summary ... 143

Error Handling .. 145

Magic xpi Error Handling ... 146

Step Error Handling .. 147

Flow Level Error Handling ... 148

Dedicated Error Flow .. 150

Exercise .. 152

Summary ... 152

Adding a Customer ... 153

Systinet ... 154

Providing a Web Service .. 155

Web Service Trigger .. 158

Retrieving Information from the ODS .. 159

Testing the Web Service ... 162

Exercise .. 164

Summary ... 164

Handling Approved Requests .. 165

Publish and Subscribe Utilities ... 166

‘Handle Request’ Topic ... 166

Subscribing a Flow ... 167

Deleting the ODS from the System .. 170

Publish the ‘Handle Request’ Topic ... 171

Exercise .. 172

Summary ... 172

Automatic Item Check .. 173

Scheduler Utility ... 174

Flow Enablement .. 178

Exercise .. 179

Summary ... 179

More About Magic xpi .. 181

More about the Data Mapper .. 182

Email XML Configuration ... 188

User Defined Storage (UDS) .. 192

Exercise – Mapping a Flat File to an Order ... 197

Summary ... 198

From Development to Deployment ... 199

Recommendations .. 200

Deployment Issues .. 200

Summary ... 202

Course Data ... 203

Sample XML Requests ... 203

Entity Relations Diagram (ERD) ... 204

Solutions .. 205

Solution Lesson 4 – Resources .. 207

Solution Lesson 5 – Scan for New Requests ... 208

Solution Lesson 6 – Flow Orchestration ... 209

Solution Lesson 7 – Checking Customer Existence .. 211

Solution Lesson 10 – Item Validity Check .. 215

Solution Lesson 11 – Services .. 221

Solution Lesson 12 – Checking Request Status ... 222

Solution Lesson 13 – Error Handling ... 225

Solution Lesson 14 – Adding a Customer .. 228

Solution Lesson 15 – Handling Approved Requests .. 232

Solution Lesson 16 – Automatic Item Check ... 236

Solution Lesson 17 – More About Magic xpi ... 240

Introduction 1

elcome to Magic Software University’s Getting Started with Magic xpi 4.5

self-paced tutorial. We, at Magic Software University, hope that you will

find this tutorial informative and that it will assist you in getting started with

this exciting product.

The self-paced tutorial is constructed with the same information that has proven

successful and useful in the classroom setting. The self-paced tutorial that you are

currently reading is provided in addition to the classroom course. It contains the same

information but has more step-by-step information. The purpose of this self-paced

tutorial is so that you can refresh your memory after sitting in on the classroom

sessions. This tutorial does not replace the classroom lessons, but instead complements

the classroom studies.

About the Course
The course is intended for people who want to know how to successfully use Magic

Software Enterprises’ Magic xpi Integration Platform, and to be able use Magic xpi to

integrate with external resources.

During the course you will learn about Magic xpi and how it works. You will use some

of the flow components that Magic xpi provides to create flows, and you will learn

how to connect to some external resources.

Before you install Magic xpi 4.5, please ensure that your computer meets
the hardware requirements described on the next page.

We also recommend that you consult the Magic xpi Installation Guide.

Introduct ion

W

Introduction 2

Course Prerequisites
Before you start with the course there is basic knowledge that you need to have:

Development knowledge Familiar with:

 Databases: tables, rows, fields and indexes
 XML
 HTML technology, such as HTML and HTML tags

Your computer must also meet some basic requirements:

Hardware
 Windows 7 and later. The course was tested on

Windows 7.
 Pentium processor 1.8GHz and upwards.
 4Gb RAM or greater
 At least 2Gb free space
 Your screen should be set at a resolution of at least

1024x768 pixels.

MSSQL Server Access to MSSQL version 2005 and above. You will
need the supervisor password for the installation.

Web Server A personal IIS Web server must be installed on your
computer. Some exercises that you will develop use the
Web server.

License The course uses the standard license. Please obtain a
Magic xpi 4.5 IBNPSRV evaluation license from your
local Magic Software Enterprises representative.

Email Server You need access to an email server so that you can send
emails. You can use your Gmail, Yahoo or Hotmail
accounts as well. Check the internet for instructions on
how to configure those mail servers for POP3, IMAP and
SMTP.

Email Client You will need an email client to view emails that were
sent by the system. You can use an email client such as
Mozilla Thunderbird.
If you are using a web-based email such as Gmail, you
can use the internet browser to check the mail.

Introduction 3

How to Use This Tutorial
To get the most out of this tutorial , follow the classroom lesson and ask any questions

that you have. You can then review the self-paced tutorial for that lesson, and if you

have further questions you can ask the instructor before the next lesson.

The self-paced tutorial provides more step-by-step instructions. If you are learning using

this self-paced tutorial, feel free to contact your Magic Software Enterprises

representative or the Support department for further assistance.

Exercises
At the end of most lessons, there is an exercise. There are solutions provided for most

of the exercises. These are provided as a complete project. Try to do the exercise on

your own before looking at the solution.

Note that your solution may differ from the solution offered. This does not mean your

solution is incorrect, as there are many ways to solve a problem. The solution provided

with the course shows one method of solving the problem.

Course Material
The course material contains the following:

 Course data – This is data that you will need during the course exercises. This
includes the database scripts and the XML schemas that you will be using. During
the course you will need to copy this directory to your Magic xpi project folder
once you start your project.

 Student Guide – This is the course classroom handout.
 Self-Paced Tutorial – This is the book you are reading. It contains the course, but as

a self-paced guide.

Introduction 4

 Magic xpi Overview 5

Magic xpi Overview
Magic xpi Integration Platform is a comprehensive integration tool delivering fast and

simple integration and orchestration of business processes and applications. Magic xpi

enables the development and implementation of true enterprise application integration

(EAI), business process management (BPM), and service-oriented architecture (SOA)

infrastructure.

In this lesson, you will learn about integration projects, and get a first glance of the

Magic xpi development environment. You will be able to identify the main components

of Magic xpi Integration Platform. This lesson covers various aspects of Magic xpi

Integration Platform, including:

 The Magic xpi Studio
 Deploying your project
 Tools

Lesson 1

 Magic xpi Overview 6

Introduction
In the early days of application development, developers were concerned with solving

specific business problems. When a data connection was needed between

applications, a specific interface was developed between those specific applications.

Applications were connected with no clear indication of the flow process and, as the

pace of business change accelerated, connecting the systems became a major

roadblock.

Enterprise Application Integration (EAI) emerged as a method to integrate the wide

array of IT applications.

EAI became a top priority in many enterprises. With the internet and the creation of

the extended enterprise, Business to Business (B2B) integration became possible.

 Magic xpi Overview 7

Magic xpi Studio
Magic xpi Integration Platform includes the Magic xpi Studio, which is a graphic

design tool that lets you design and create integration projects for your organization. It

contains the development tools for the Magic xpi project.

The Studio’s design features allow you to develop your integration project in an

intuitive and methodical way.

Integration Flows

The flows are the backbone of your Magic xpi project. An integration flow is a set of

steps, comprising their own logic that controls the execution order of the steps.

A step can either call a Magic xpi flow component or use one of the Magic xpi Server

services.

The integration flows are executed by the Magic xpi Server during deployment. You

can use a flow variable to define the flow’s logic.

An integration flow can be comprised of several objects, such as:

 Flow components
 Utilities
 Flow variables, context variables, global variables, and system variables
 Environment variables
 Flow logic
 Error handling

 Magic xpi Overview 8

Components
A flow component is used within the integration project as a step in a Magic xpi flow.

Flow components can have connecting, adapting, converting, and processing

capabilities. Magic xpi flow components can also be used to connect to third-party

products and enable integration within the organization. Flow components provide

connectivity functionality and are highly customizable to achieve the required

integration functionality. Components are provided for use in the following ways:

 Out-of-the-box: These are components supplied with Magic xpi. You need to
configure these components for the specific task at hand.

 Self-developed: These are components that you can develop for use in your
integration project. Magic xpi provides a Connector Builder to create your own
component.

A Magic xpi flow component must provide a specific interface, which is used by the

Magic xpi Studio and the Magic xpi Server to incorporate the component in the

Magic xpi project.

This provides transparency between the flow components, and allows you to create

your flow components in a standard way.

 Magic xpi Overview 9

Flow Orchestration

You can set conditions or rules on how the execution of the flow will perform.

Within the flow you can place conditions on the different flow components. This tells

Magic xpi which branch to follow, based on which condition evaluates to ‘True’. This

mechanism enables you to create branches, loops, and any other flow logic that is

necessary for the integration project.

Data Management

Most integration projects deal with data, so this is something that has to be handled.

With Magic xpi, data can be handled in multiple ways. It can be:

 Transferred to a secondary destination, such as another application, or a
messaging queue

 Converted to another format, such as an XML file or text file
 Saved in one or more tables (such as SAP and Salesforce) and databases
 Used as conditions for other activities

To accomplish the above scenarios, Magic xpi provides:

 The Flow Data utility
 The Data Mapper
 Flow orchestration mechanics

 Magic xpi Overview 10

Deploying Your Project
There are four elements involved in running a project:

Magic xpi Server

The Magic xpi Server is a scalable, high performance enterprise server for deploying,

running, managing and maintaining integration projects. The Magic xpi Server

provides runtime containers and enterprise services that run integration processes, as

defined in the integration project.

The Magic xpi Server is based on In-Memory Data Grid technology as the underlying

messaging and context infrastructure, and on Magic xpi runtime processes (workers) to

execute integration flows.The Server is started as a process in background mode and

has no user interface.

The Magic xpi Server runs on various operating systems, such as Windows and Linux.

In-Memory Data Grid

The in-memory data grid is middleware software composed of multiple server

processes running on multiple machine instances (physical or virtual) that work together

to store large amounts of data in memory.

Magic Monitor

Since the Magic xpi Server has no user interface, the Magic Monitor is provided to

monitor the Server activity.

The Magic Monitor displays information about an integration project’s deployment

performance and accuracy. The information provided by the Monitor enables you to

examine the project (flow by flow) after the Server has processed it. This enables you

to see if there are any errors that need to be fixed, and to see if any modifications

need to be done to improve performance.

You can track your project's execution in greater detail through the Dashboard,

Messages, Flows, Triggers, Servers, Locking, Subscription, Scheduler, Summary,

Activity Log, ODS, and BAM tabs.

 Magic xpi Overview 11

Magic xpi Debugger

The Magic xpi Debugger enables you to debug the project for any errors.

The Debugger displays extra information about the current execution, such as flow

variables, user parameters, flow logic, and the activity log.

Version Control
Version Control, which is sometimes referred to as Source Management, provides the

following functionality:

 Revision management of code
 Multi-user access to the same project

Magic xpi provides Version Control support for third-party version control products,

such as Microsoft Visual SourceSafe.

Magic xpi Version Control functionality provides the following benefits:

 Save versions – You can save versions of various aspects of the project, enabling
you to retrieve a previous version of any part of the project.

 Team development – You can develop your project in a multi-developer
environment. Each developer works on a copy of the project's source files, and is
responsible for synchronizing their own copy with the Version Control system.

 File protection – To edit a file, you first need to check out the file. This protects the
source files from being accidentally overwritten by another user.

Version Control functionality is available in Magic xpi for various objects, including:

 Projects
 Business processes
 Flows – Each individual flow can be checked out
 Repositories
 Variables – Global and Context variables can be checked out

When creating a new project, you define whether the project will be implemented

using Version Control. You can also add an existing Magic xpi project to a Version

Control system.

You will not be learning about Version Control in this course.

 Magic xpi Overview 12

Tools
Magic xpi gives you some useful tools to create and maintain user defined

components, and to check the syntax of the current project or flow.

Connector Builder

There are certain occasions when you will need customized code that Magic xpi does

not provide out of the box. Magic xpi provides a Connector Builder that allows you to

create a component for your specific needs and connect to the Magic xpi Studio for

use within the integration project.

Checker

Magic xpi provides a tool to check the syntax within the integration project. The

Checker tool will find things like unconfigured steps and incompatible types when

scanning for problems. With Magic xpi, you have two different options to process the

syntax checker, either on the specific flow or on the entire project. If the checker finds

errors, it will then show you where the errors were found.

Text Search

Magic xpi enables you to search for specific text within the integration project. You

can search either on a specific flow or the entire project. If the text is found, Magic xpi

will then show you where that text is located.

 Magic xpi Overview 13

Summary
In this lesson, you learned about the Magic xpi Studio. You should now be familiar

with:

 Integration projects.
 The main components of Magic xpi Integration Platform.
 Flow components, and the difference between out-of-box components and self-

developed components, for inclusion in your integration project.
 The built-in debugger, where you can monitor and debug your flows.
 Magic xpi tools.

 Magic xpi Overview 14

Magic xpi Methodology 15

Magic xpi Methodology
When embarking on a development project, it is good practice to define a

development methodology. When working according to a defined methodology, you

can save valuable time by finding problems during the early stages of the project.

Magic xpi Integration Platform is a comprehensive integration tool designed to provide

you with maximum integration capabilities for your organization.

When embarking on any development project, there are various stages:

Analysis System definition Development Debugging Deploying

If you work according to a defined methodology, you can prevent future errors and

minimize problems that you may be faced with during each stage of the project.

This lesson introduces the recommended methodology when working with Magic xpi.

The course’s lessons follow this methodology.

In this lesson, you will learn about the recommended Magic xpi development

methodology and you will be introduced to some of the terminology that you will be

learning about during this course.

Lesson 2

Magic xpi Methodology 16

Identifying Business Processes
A business process is the business logic that leads to a specific workflow in the

organizational structure. The business process is a set of activities that are performed

by people or machines.

Each business process can be broken down into smaller business logic cycles.

Example:

 You may have a business procedure called Recruitment, which begins with a
search for a candidate and ends with the candidate starting to work.

 This can then be broken down into a number of separate processes, such as
accepting candidates' resumes and inviting them for an interview.

 Another process could be the new employee's first day at work, in which the
employee receives a car, a desk, a chair, a computer, and an email address.

Identifying Participating Applications
The business process defines specific workflows within the organization.

The workflow is a logical flow of activities that are executed by people or machines.

Some of these machines include computer applications and databases.

These applications form the backbone of the flow, since they are responsible for

storing and handling information needed in order for the flow to be successful.

An application can be on a proprietary standalone server or on an application with a

database that each member of the organization has access to, such as the mail server.

Each application that takes part in the workflow needs to be identified, including the

physical location of the servers and their stress load.

Magic xpi Methodology 17

Identifying Project Resources
Once you have identified the organization's business processes, participating

applications, and IT infrastructure elements, you will need to define how the Magic xpi

project should interact with them.

The Magic xpi Server can interact with these applications using various methods, such

as SQL, emails, messaging queues, and many others.

These external entities are resources that the Magic xpi project interacts with to provide

a solution for the integration project. After you have decided how Magic xpi will

interact with the external applications, you can then define the Magic xpi resources.

Magic xpi Methodology 18

Identifying Project Services
During the deployment of a Magic xpi project, the project will use the external

resources that were defined in Magic xpi.

However, when defining the business process, you may find that some of these

resources need to activate Magic xpi externally. To handle these external requests,

Magic xpi exposes various services that an external application can invoke when

required.

Services are the application units that the project exposes externally, enabling them to

be invoked from external applications. The service definition holds the interface

information with which applications can call a Magic xpi project.

The Magic xpi Server offers services using various methods, such as:

 Web services
 HTTP
 Messaging queues
 Email triggers
 And much more…

Once you understand how other applications need to interact with Magic xpi, you can

define the Magic xpi services that are needed for the project. Services are defined in a

central location for definition and management purposes. These defined services can

be used when you add triggers to a flow.

Magic xpi Methodology 19

Designing Flows
Flows are the backbone of the integration project.

Each individual flow is broken down into steps that need to be implemented when

developing the integration project. Each step may branch off into further steps,

depending on whether a specified condition is met.

When you are in the design phase, you should give considerable thought to how each

flow will be invoked. Flows can be invoked in numerous ways:

 When the project loads
 At a specified time or at polling intervals
 As a result of an external procedure, such as being triggered by an external HTTP

request
 By another flow

Testing and Deploying
As with any development project, when the integration project is developed, it needs

to be tested. Your project can be tested and debugged (using the built in Debugger).

Going through this process before deployment will reduce problematic issues that can

occur at a later stage.

After the project has been deployed, it will work with real data and implement the

business logic that was defined in the analysis stage of the implementation.

Magic xpi Methodology 20

Summary
In this lesson you learned about the recommended Magic xpi development

methodology. You should now be familiar with the following terminology:

 The recommended Magic xpi development methodology
 Business processes
 Magic xpi resources
 Magic xpi services
 Integration flows

During this course you will learn more about the subjects that were touched on during

this lesson.

Magic xpi Project 21

Magic xpi Project
In the previous lesson, you learned about the recommended methodology for

approaching a Magic xpi project.

To implement this methodology, you first need to create a new project in Magic xpi

using the Magic xpi Studio. This is the first application in Magic xpi Integration

Platform that you need for your integration project.

Lesson 3

Magic xpi Project 22

Starting the Magic xpi GSA Service
If you selected the Install the Grid Service Agent (GSA) as a service check box when

installing Magic xpi, the Magic xpi GSA service should be running on your machine.

A Magic xpi 4.5 project cannot run if the service is not also running. This is the default

when installing Magic xpi, so you should already have it on your machine. However,

let’s first check that it’s up and running:

1. On your machine, from the Start menu, click Run.

2. In the Run dialog box, enter services.msc.

3. In the Services dialog box, look for Magic xpi 4.5 GSA. If it has a Started

status and an Automatic startup type, then it’s running.

4. If not, double-click on it and in the Magic xpi 4.5 GSA Properties (Local

Computer) dialog box’s Startup type parameter, select Automatic.

5. Then, run the service.

6. Click OK to finish.

Creating a Project
To create a new project, you need to be in the Magic xpi Studio. The Magic xpi

Studio can be executed from the Magic xpi Studio shortcut in the Windows Start menu.

To create a new Magic xpi project:

 Click the File menu, select New, then Project. The New Project dialog box opens.

 Alternatively, click the New Project icon , or press CTRL+Shift+N.

Magic xpi Project 23

Once you have opened the New Project dialog box (see figure below), there are three

properties that you can fill in:

 Name – This name identifies your integration project and is used as an index in
various tables. You will learn more about this later.

 Location – This defines the location where your project will be created.
 Solution Name – By default, this is the same as the name that you assigned to the

project in the Name property (above).
 Create directory for solution – Select this check box if you want to change the

solution name to something else.
 Add to Source Control – Select this check box if you want your new project to work

with Version Control.

You will now get hands-on practice with the Magic xpi Studio:

1. Create a new project called: Magic_xpi_course.

2. Click OK to save your new project. By default, Magic xpi will save the project

in the Users\<your user name>\My Documents\Magic\projects folder.

3. Open Windows Explorer, and go to the Windows directory where you saved

the project (Users\<your user name>\My Documents\Magic\projects).

Magic xpi Project 24

Created Project Files

Once you have saved the new project, Magic xpi creates various files and directories

in the projects directory. As mentioned earlier, the project files were created in the

following path:

My Documents\Magic\projects\<project name>

For example, your project was created in:

c:\Users\<your user name>\My Documents\Magic\projects\Magic_xpi _course

Please take note of the following files. Some of these files will be discussed in more

detail during this course:

Directory / File Description

Source Directory This is the location where Magic xpi creates all the
source files that are needed for the project. All the
files in this directory are in XML format, and should not
be changed.

Magic_xpi _course.mgxpiproj This is the project metadata and contains all the
project definitions.

Resources.xml This file contains the settings for the external
applications that are needed for the project. You will
learn about resources in a later lesson.

Services.xml This file contains the settings for the application units
that the project exposes externally, so that they may
be invoked from external applications. You will learn
about services in a later lesson.

Course Data

For the purpose of this course, data has been prepared for you.

 Copy the course_data folder into the project’s directory.

Magic xpi Project 25

Environment Variables
Environment variables are configuration variables that you can define for the project.

They are useful for defining the environment properties within a Magic xpi project.

These variables enable the smooth portability of projects between environments:

 Development Environment Production Environment

To achieve portability, Magic xpi translates these variables at runtime, according to

the values entered in the Settings dialog box’s General Environment section, under

Internal Environment Variables.

You will learn more about environment variables during the course, and you will use

them in your examples.

When creating a new Magic xpi project, a number of predefined environment

variables are created for the project.

There are also directory-related variables:

currentprojectdir %projects%Magic_xpi_course%sl%

This environment variable contains the path to the directory
where the current project resides. By using this environment
variable within the project, hard-coding directory paths can
be eliminated.

currentproject %currentprojectdir%Magic_xpi_course.mgxpiproj

This environment variable contains the full location of the
project that is currently loaded. This variable is updated by
Magic xpi when the project is loaded.

Magic xpi Project 26

The screen below shows an example of the environment variables in the Settings

dialog box’s Environment section.

Magic xpi Project 27

Project Properties
A Magic xpi project has

various properties, which can

be configured to your

requirements in the Project

Properties window.

To open the Project Properties

window from an existing

project, select the Project

menu and click

<Project Name> Properties.

Property Description

Name The name of the project. This property cannot be modified in this
window.

Description A description of the integration project.

Modified The last time the project was modified. This property cannot be
modified.

Owner The project owner (as specified in the Owner parameter of the INI
configuration file). This property cannot be modified in this window.

Version This property is maintained by the developer and is for information
purposes only.

Project data
encoding

The language encoding (the language and character set) that is used in
the project file and in any destination XML file created in the Data
Mapper.

Resource
settings file

This property points to the location of the file holding the resource
settings. This file can be edited externally to port the project to different
environments.

Services
settings file

This property points to the location of the file holding the service
settings. This file can be edited externally to port the project to different
environments.

Magic xpi Project 28

Course Project
During this course, you will build your own integration project with Magic xpi and will

find solutions for the some of the common challenges that you are likely to face.

Company Description

MSU Computers Ltd. sells computer hardware products.

There are several departments:

 Purchasing – This department purchases stock from vendors and manages the stock
in the warehouse.

 Sales – This department handles customer relations and the approval of the
customer orders.

 Distribution – After an order is approved, this department handles the delivery of
orders to the customer.

The Current Status

Currently, the company works with different systems and a lot of the work is manual:

 The Sales department receives a request for items in XML format.
 Each request is approved by the Sales department at two levels: financial and

stock availability.
 The Logistics department verifies the stock availability by phone or email.
 After the request is approved, it is manually entered into the Distribution

department’s system and the items are delivered to the customer.

Defining the “Challenge”

Recently, the company's management decided to integrate the systems and defined

new goals. The goals are to:

 Enable a customer to register and to enter requests via the web.
 Decrease the cost of the order handling process and the post-sale process.

Magic xpi Project 29

The Proposed Solution

The company management investigated and considered several technologies and

solution approaches, and decided on the following course of action:

 Connect all of the company’s systems.
 Receive requests through the Website, and make them available on the company's

system. This will prevent errors that result from duplicate information in both the
system and the Website.

 Decrease the request handling duration, such as less typing, less human errors,
and information available anywhere.

 Define an "Exception Approval" process for the Sales department. This process will
approve orders when there is insufficient stock.

 Add an automatic email for notifications and approval requests.

Project Description

The course project handles a customer request in the following manner:

 Accept/check for new customer requests.
 Check for stock availability within the local database.
 Have a human intervention step (if required).
 Process the request and update the delivery process.

Magic xpi Project 30

Summary
In this lesson, you learned about the Magic xpi project, including:

 Opening the Magic xpi Studio
 Creating a new integration project
 Environment variables
 Project properties
 The challenge of the course project

Resources 31

Resources
Before you can actually start and define an integration flow, you need to identify and

define the different resources that will be communicating with the project. Magic xpi

provides a central location to define all the external resources referenced in the

project. This is the Resources section of the Settings dialog box. The Settings dialog

box can also be opened from the Start menu in stand-alone mode.

The Resources section defines all the external systems that Magic xpi needs to access

during project execution.

Each resource contains the configuration details needed for a successful connection to

an external application. For example, if you need to connect to a specific database,

you only need to configure the connection details once.

Lesson 4

Resources 32

Advantages
Magic xpi provides a central location to define all the external resources referenced in

the project. This approach has many advantages.

In the code itself, you refer to the resource name. You can refer to the same resource

many times in your project, while the configuration details are stored only once.

The resource configuration details are stored separately from the integration flow logic.

This allows easier administration, deployment, and migration between environments

without changing the code.

Resources can be defined once and shared among multiple integration projects. This is

particularly common in situations where resources such as Email or databases are

defined.

? Before continuing, take a step back and think which resources you
will be using in the course project.

Resource Types
Before you discuss the resources themselves, you must know about resource types.

Resource types are a predefined category of resources that share the same type of

properties. For example, Database is a resource type. You may have multiple

databases defined in your project, using different DBMSs such as Oracle or MySQL,

but all share the same or similar configuration properties, depending on the particular

DBMS.

Resource types are predefined in Magic xpi, and the properties associated with each

type are stored in the <Magic xpi 4.5 installation>\Runtime\resource_types.xml file.

Although it is possible to modify these definitions, it is not
recommended and should be done only by advanced developers.

Resources 33

Adding a New Resource

To access the Resources section of the Settings dialog box, click the Project menu and

select Settings.

The Resources section is divided into two panes. In the left pane, there is a list of all

defined resources grouped by resource type. In the right pane, you can find the

configuration properties of the currently highlighted resource.

To add a new resource:

1. Click Add.

2. The New Resource dialog box appears.

3. Select Email from the Resource Type

dropdown list. You will use this resource later

on to send notifications to the salesperson.

4. Set the resource name to Company mail server. This name is the internal name

to reference this resource throughout the project. It is recommended to use a

meaningful name.

5. When you are done, click OK.

You can change the resource name at any stage by parking on the
resource and selecting Rename from the context menu.

Resources

Definitions

Resources 34

Once the resource has been added, the resource name will show in the left pane and

a list of properties will appear in the right pane. As mentioned before, the number and

type of properties are unique for each resource type.

You can now set the properties for the resource, in this case the Email resource. The

properties that may be set for an Email resource are:

Property Description

Server Type This could be either POP3 or IMAP for incoming mail. Leave
the property blank for outgoing mail. For the purpose of this
course, use IMAP.

Incoming Mail Server This is the name of the mail server, such as mail.example.com.

Incoming port The port that the mail server is listening to. For secured
connection, the default is 110.

Incoming Secure
Connection (SSL)

Specifies whether the communication with the incoming mail
server will be established over a secured connection.

Outgoing Mail Server The name of the SMTP server, such as smtp.example.com. This
is the only protocol supported for sending email.

Outgoing Port The port that the SMTP server is listening to. Typically 25.

Outgoing Secured
Connection (SSL)

Specifies whether the communication with the SMTP server will
be established over a secured connection.

From Address Enter a valid email address. This is the address that emails are
sent from. For example, magicxpi@outlook.com.

User User name for the mail server authentication, such as
magicxpi@outlook.com.

Password Password for mail server authentication. The characters entered
are masked for security reasons.

If a Resource property is in bold font, it is a mandatory property.

Resources 35

When you have defined the Company Mail Server resource, your Resources section

should look similar to the image below.

After entering all the relevant information, it is highly recommended that you check the

accuracy of the information you entered by clicking Validate. This is very important, as

it verifies the validity of your newly-created connection.

When you click Validate, Magic xpi connects to the resource using all the parameters

that you have supplied. If the connection is valid, you will get a dialog box showing

that the connection was successful. However, if the connection fails, you will get an

error message that explains why it failed.

Resources 36

Exercise
Here you will practice what you learned in this lesson. You are going to create a

resource that you will need in later lessons.

 Database Resource – This resource will connect to the course data in MSSQL.

 The resource name is Course Database. You will refer to this during later
lessons.

 Configure all details according to your MSSQL setup.
 The course database is Magic_xpi_course.

To be able to complete the course project successfully, you need to
load the supplied database tables into the MSSQL Server that is
installed on your machine. To do this:

1. In the <My Documents>\Magic\projects\Magic_xpi_course\
Magic_xpi_course\course_data\DB\MSSQL folder, open the
runsql.bat file for editing. Edit the file as follows:

• Replace %1 with your database user name.
• Replace %2 with the database server name.
• Replace %3 with your database user password.

2. Save and run the runsql.bat file.
3. In the <My Documents>\Magic\projects\Magic_xpi_course\

Magic_xpi_course\course_data\DB\MSSQL folder, double-
click the logsql.txt file to verify that the database tables have
been loaded properly.

Summary
In this lesson you learned about the Resources section of the Settings dialog box.

The Resources section provides you with a single location to configure the external

resources, making it easier to maintain them within the project.

You created a number of resources that you will use during the course.

Scan for New Requests 37

Scan for New Requests
Now that the analysis has been completed, and you know how the business processes

will flow in the project, it is time to start writing the integration flows. You will be taking

the business process model and turning the logical flows into actual flows.

The Flow Editor is the main editor that you will be using in the Magic xpi Studio. With

the Flow Editor, you create the actual business processes. These consist of the flow

components and the flow logic.

In this lesson, you will learn about the integration flows. You will also be introduced to

the components that make up the flows.

This lesson introduces various topics, including:

 The Flow Editor
 Creating a flow
 Flow properties
 Flow components
 The Directory Scanner component
 The Email component

Lesson 5

Scan for New Requests 38

Flow Editor
The Magic xpi Studio consists of three panes (see image below):

 Solution Explorer – This pane displays all of the projects, repositories, business
processes and flows that have been defined.

 Toolbox pane – This pane contains a list of components, grouped together under
various categories, that are available to be used in the integration flow.

 Main pane – This is the Flow Editor, and holds all the logic to process the
integration project.

The Flow Editor consists of two different areas (see image below):

 Trigger Area – This is an area that defines when and what flow is called. You will
learn more about this later in this course.

 Flow Area – This area contains all the logic that connects the components together.
You will be doing most of your development here.

Toolbox

Trigger area

Flow area

Solution Explorer

Components

Scan for New Requests 39

Defining a Magic xpi Flow
When you create a new project, Magic xpi automatically builds an initial default flow,

named Flow – 1. You can use this flow to suit the needs of your integration project.

Renaming Flows

The Magic xpi flow naming convention is provided as a default. It is good practice to

give the flow a meaningful name.

To rename the flow:

1. In the Solution Explorer, park on Flow-1.

2. Right-click to access the context menu, and select

Rename.

3. Type Scan for New Requests as the new name for the

flow.

Creating a New Flow

You may add as many flows as needed to the business process, with each flow

showing the physical representation of the business logic. You will add more flows

later in this course.

To add a new flow to the project:

1. Right-click on the Business Process where you want to add the flow.

2. From the context menu, select Add Flow. A new flow will be created with the

initial name Flow-2.

Scan for New Requests 40

Flow Properties

Each flow that is created has a set of properties that can be set for it.

To access the flow’s Properties pane:

1. Park on the Scan for New Requests flow.

2. Right-click to access the context menu and then select Properties.

The flow’s Properties pane is displayed. It contains the following sections:

 General – You can set general information about the flow.
 Enablement – You set information about when this flow is available. You will learn

more about this in a later lesson.
 External – You set information about what happens during certain scenarios. You

will learn more about this in a later lesson.

Scan for New Requests 41

General Section

In the General section, there are various properties that can be set:

Property Description

Name This is the name of the flow.

Description A detailed description of the flow for documentation.

Path A read-only parameter showing the location of the flow file.

ID This is an internal identifier for the Server.

Auto Repeat Determines whether the Magic xpi Server will process the flow
again when the last flow component is completed. The options
are Yes or No.
This can create a loop effect.

Note: When marking a flow as Auto Repeat, the
icon will appear in the Trigger area.

Auto Start This determines whether Magic xpi will invoke the flow when
the Magic xpi Server loads this project. The options are Yes or
No.

Note: When marking a flow as Auto Start, the icon
will appear in the Trigger area.

DB Transaction Transaction support according to the availability of the
component. Here, you select the resources that will take part in
the transaction.

Enable Select Yes or No to enable or disable the flow.

When you disable a flow, the flow is not executed when the
project is deployed. You can enable a flow during runtime
either by using the Enable Flow utility or from the Monitor.

Active Select Yes or No to activate or deactivate the flow.

You can improve the Checker's performance by marking a flow
inactive. The flow is then omitted from the Checker process,
and also from the deployment process.

Max Instances Enter the maximum number of flows that Magic xpi can process
simultaneously, including the first flow.

Leaving the default as zero means that the number of flow

Scan for New Requests 42

Property Description

instances is unlimited.

Recovery Policy Determines the flow’s recovery policy when an error occurs.

Timeout Policy This property lets you define what will happen once the timeout
is reached. The options for the Timeout policy are: Abort,
Restart, or None.

Timeout Value
(Unlimited)

This property lets you define how long the flow can run before
Magic xpi will end it. If you are connecting to an external
system, this policy should be set to prevent the system waiting
indefinitely for an answer.

Introduction to Variables
During the invocation of a flow, it is often required to have a temporary storage place

for the information. This means that the information can be referred to, and used by,

the integration flow, or it can be sent to another integration flow.

Magic xpi predefines some variables that you can use, or you can create your own.

You will learn more about the different types of variables in the next lesson.

For the purpose of this exercise, you will be introduced to a few of the Magic xpi

predefined context variables. You will learn more about variables in later lessons.

The minimum you need to understand about context variables at this
stage is that they are created when a new context is launched; in this
case the flow is invoked. They are valid as long as the context is alive.
They are defined once for all the flows in the project.

The following Magic xpi-generated context variables that you will be using for this

exercise are:

 C.UserString – String information up to 1000 characters
 C.UserCode – Numeric information up to 12 digits
 C.UserBlob – Binary information
 C.UserXML – Text information

Scan for New Requests 43

Flow Components
Magic xpi provides many components that you can use in your integration project.

Components have many different functionalities, including, but not limited to

connecting, adapting, converting, and processing.

When you park on a flow, you can view the available components in the Toolbox

pane, grouped under the relevant headings for their type.

Scan for New Requests 44

Directory Scanner Component
According to the business process logic, requests were sent to the system and were

placed in a certain directory on the Server. Then, a process would scan to see whether

there are any requests in the directory and if there were, it would continue with the

flow.

To meet this requirement, you will use the Directory Scanner as the first step in the

Scan for New Requests flow.

The Directory Scanner component checks local area network (LAN) and/or FTP

directories to see whether files are located in the scanned directory or subdirectory.

The component can also automatically perform specific actions on the specified files in

the directories scanned by the component. You can also exclude a group of files or a

specific file from being watched.

You can use the component to perform various actions, such as:

 Move
 Delete
 Rename

The component can work in two modes: Step mode or Trigger mode.

 Step – Once the first file satisfying the configuration criteria is found in the
specified time period, or once the time period has elapsed, the required action is
performed.
For example, you can set a timeout for the component of one second. The Directory
Scanner will scan the directory for the relevant file until the file is found or until it
exceeds the defined timeout (one second, in this example).

 Trigger – The component is activated by the Server, and keeps scanning the
directory for new files as long as the activating Server is running. You will learn
more about triggers in a later lesson.

You will be using the Directory Scanner in step mode in this example.
However, you should note that in the case of this example it would be
better to use the Directory Scanner in Trigger mode.

Scan for New Requests 45

Using a Component
To use a component from the Toolbox pane, you will need to drag the component you

wish to use and drop it into the Flow Editor pane.

You will add the Directory Scanner as the first step in the Scan for New Requests flow.

To do this:

1. Click on the Directory Scanner component.

2. Hold the left mouse button down, move the cursor to the Flow Editor pane, and

release the mouse button.

If components already exist in the Flow Editor, then you need to drop
the component on the component that will be executed before this
component. Magic xpi will automatically place the new step as the
next step in the flow.

Scan for New Requests 46

Component Properties

Once you have placed the Directory Scanner component in the Flow Editor, its

properties are displayed in the Properties pane. For each component, you will need to

configure the component to suit the needs of the project. Magic xpi enables you to use

the same component multiple times within the flow. You simply need to configure each

component for that particular step.

The component’s Properties pane has four sections:

 General – Contains general information about this step, such as the name of the
step.

 Advanced – This covers features such as two-phase processing, and other more
advanced properties. You will not learn about this section during this course.

 Logging – This is useful for debugging purposes. You will learn more in a later
lesson.

 Setting – Contains the connection information as fetched from the resource.

Scan for New Requests 47

In the General tab, there are various properties:

Property Description

Step Name The name of the component. This is the name that will appear on
the Flow Editor and in the logs. It is good practice to provide a
meaningful name.

Description Detailed description of the component, describing what the
component does.

Step ID A read-only field displaying the ID of the step or trigger in the flow.

Component ID This is an internal identifier for the component.

Component Type A read-only field displaying the name of the step type.

Condition A condition that specifies the flow’s execution behavior.

Processing Mode This will determine how Magic xpi will execute the step. The
options are:

 Linear
 Parallel
 Stand Alone

Wait for
Completion

This will determine if Magic xpi will wait before continuing to the
next step, if there are parallel steps defined.

Interface This is the interface that will be used with the component:

 XML – Configured using a pre-created XML file.
 Method – Configured using the Direct Access Method dialog

box.

Set the following properties for the Directory Scanner component you dragged:

3. Set the Step Name property to Scan Directory.

4. Set the Interface property to Method.

Scan for New Requests 48

In the Setting section, you define which resource contains the connection settings.

Resource Name – Displays the list of resources that

you defined in the Resources section of the Settings

dialog box. You can define a Dynamic resource by

using an expression. You will learn more about

expressions in a later lesson.

If no resources exist, you can add one by selecting

New from the Resource Name property’s dropdown

list.

Note: For a Directory Scanner component, you will

only need to configure a resource when working with

FTP.

Scan for New Requests 49

Component Configuration

Every flow component needs to be configured to let Magic xpi know what needs to be

done for the current step.

If the component has not yet been configured, you will see a red wheel

symbol in the top right corner of the component.

To configure a component, either double-click on the component or right-click on it and

select Configuration from the context menu.

In this lesson, you will learn how to configure the Directory Scanner component using

the Method interface, also known as the Direct Access Method.

There are two sections to the method’s configuration dialog box:

 Method List – This is a list of all the methods that will be processed during the step,
in the order that they appear. You can use the arrow keys to the right to move the
method either up or down in the list. You can also enter an expression to set a
condition as to whether the step will be executed or not.

 Method Parameters – There are various parameters that are necessary to perform
the highlighted method. The parameters that are in bold are required. Each entry
in the parameter list has the following properties:

Property Description

Parameter Name This is the name of the parameter.

Type The attribute of the parameter, such as Alpha or Numeric.

Picture This is the size and format of the parameter.

In/Out This defines whether the specific parameter receives a value to
pass to the method, or whether the method returns a value via
this parameter.

Value This is the value itself. A string value will be surrounded by
single apostrophes (').

Scan for New Requests 50

Configuring the Directory Scanner Example

In this example, the Directory Scanner will scan for new a request in a particular

directory, and move the file to another directory to be processed. This example will use

the LAN to LAN method, which means move from one directory to another directory.

To do this the following configuration must be made in the method’s parameter section

of the component.

1. In the Direct Access Method dialog box, click Add to add a method.

2. Select LAN to LAN from the combo box.

In Lesson 3, Magic xpi Project, you were introduced to environment variables and you

learned about the currentprojectdir environment variable. This variable contains the full

path of the current project. You will now learn how to use it.

3. Set the following properties:

Parameter Value Description

Source
Directory
Location

EnvVal
('currentprojectdir')&'course_data\in\'
You will learn more about this
expression in the next lesson.

The directory that will be scanned
looking for new requests.

Filter 'request???.xml' The name of the file that will be
scanned for. The ??? represents
wildcard characters such as:
request1.xml, request999.xml

Destination
Directory
Location

EnvVal
('currentprojectdir')&'course_data\out\'

This is the directory where the file
will be moved to.

Order Ascending Defines the order in which the
directory will be scanned.

Criteria Name Defines the search criteria. The
options are Name and Size. For
this example it will be looking by
Name.

Return File
To

C.UserXML This is the name of the variable
that the Directory Scanner will
return the content of the file to.

Return
Destination
Filename To

C.UserString This is the name of the variable
that the Directory Scanner will
return the name of the file to.

Scan for New Requests 51

If you configured the component correctly, it will look similar to the image below:

Scan for New Requests 52

Exercise

Before you begin the exercise, there are some things you need to know. You will need

to know what the email component is and you will need to know how to test your

work.

As you have not yet been introduced to the Email component, it will be introduced

here. For testing purposes, put the ‘To’ email as your own so that you will get the email

when it is sent. This will be changed later in the course.

Email Component

From within Magic xpi, the Email component can send and receive emails with

attachments. The attachments can then be saved on the local machine.

The Email component can:

 Send and receive multiple messages at the same time.
 Selectively filter emails received based on different criteria.
 View the received email messages on the Server.

For the Email component, you need to define an Email resource in the Resources

section of the Settings dialog box. This information will be used by the component. You

defined this resource in Lesson 4.

There are numerous methods that Magic xpi supplies for the Email component. In this

lesson, you will be using the Quick Send method. This method:

 Opens the connection
 Sends an email message
 Closes the connection

The lesson exercise is:

1. Add an Email step that will email a person that a new request has arrived. Call

the step Send Email to Sales. Use the Quick Send method.

2. Enter the following information for the email:

 To: postmaster@magicxpi.com
 Subject: A new request has arrived
 Body: A new request has arrived.
 Attach the original request to the email (Hint – look at the properties you

defined in the Directory Scanner step.

Scan for New Requests 53

Testing Your Project

You will want to test your flow to make sure it works.

Here you will get a very general overview of the Debugger. You will learn about the

Debugger and the Checker in a later lesson.

To run your project with the Debugger, you will need to do the following:

1. Click on the Scan Directory step.

2. From the context menu, select Breakpoint.

3. A red dot will appear next to the step. A breakpoint means

that processing will halt at that point.

4. Park on the Scan for New Requests flow and select Debug

from the context menu.

Magic xpi checks the project, in this case the flow, for any syntax errors. If there are

syntax errors, you will not be able to continue. There are various types of syntax errors,

such as a mandatory property that was not defined or was incorrectly defined.

After a few seconds, the Components pane will become the Context

Tree.

5. Click the Scan Directory (2) option.

From the context menu, select Step. This will run each step. First the

Directory Scanner step will run, followed by the Email step. You will

have to repeat this step until Magic xpi finishes processing each step in the project.

6. Once you have finished processing all the steps, click the Debug xpi menu and

select Stop Debugging to go back to development mode.

Now you can check your email inbox to see if the mail was correctly sent. As you

already know, the Directory Scanner component updated two variables, C.UserXML

and C.UserString. To view the data in these variables you can use the Context View.

You will learn about this view in a later lesson.

Scan for New Requests 54

Summary
In this lesson, you learned about creating flows for the integration project, and how to

assign properties to them. You then added two flow components. You also learned

about:

 Adding a new flow to the project.
 Setting the properties of the flow.
 Adding components as a step in the flow, and configuring the step.
 Using the Directory Scanner component.
 Using the Email component.
 The Debugger.

Flow Orchestration 55

Flow Orchestration
The essence of any integration project is the transformation of information between

systems and processes. When performing such transformation, data is retrieved,

manipulated, and rearranged. During that process, it is often necessary to have a

temporary storage place for the information. This means that it can be referred to, and

used, by the integration flow.

You already learned about flows and components - the building blocks of the

integration project. Now you will discover how Magic xpi decides which step to run

within the flow, based on dynamic conditions.

This lesson covers various topics, including:

 Variables
 Flow logic
 The Expression Editor

Lesson 6

Flow Orchestration 56

Variables
There are many different reasons for the information to be stored, such as:

 Calculating a new value based on one or more values.
 Changing the execution path of a process based on a value.
 Transferring values between different flow components.
 Providing information about the execution environment.
 Storing execution status information, user messages, and errors.

There are two categories of variables:

 Environment variables – These are maintained externally.
 Project variables – These are different types of variables to serve different

purposes. In the previous lesson, you used context variables.

Flow Orchestration 57

Environment Variables
Environment variables, as their name implies, are primarily used to describe the

physical operating environment of the project. This includes file locations, database

names, and any other values that may change as the operating environment changes.

As an example, for most projects the development environment is different from the

testing and the production environments, and each may have its own server, database

and other related configuration information.

An environment variable is a named placeholder for an alphanumeric value. The

runtime engine will look for the value of an environment variable during execution.

Whenever it encounters a name surrounded by the percent symbol (%), it replaces the

value with its defined content.

For example, if you have a variable name drive with the assigned value d:\, then the

string %drive%FTP\IN will be interpreted during runtime as d:\FTP\IN.

You can use environment variables recursively, meaning that you can use one variable

name when defining another. Consider the following example:

Variable Name Defined Value Interpreted value

sl \ \

drive C: C:

datapath %drive%%sl%data%sl% C:\data\

Inbound %datapath%in%sl% C:\data\in\

Outbound %datapath%out%sl% C:\data\out\

Environment variables are case sensitive.

Flow Orchestration 58

There are two types of environment variables:

 User – These variables are defined by the developer. You can add, delete, or
define the translation value of those variables. When deleting or renaming
variables, Magic xpi does not check whether the name is used in your code, and
does not change your code to reflect the change.

 Internal – Magic xpi provides several predefined environment variables. You
cannot delete these variables, but you can modify their value. One of the most
commonly used predefined variables is currentprojectdir, which points to the
physical folder in which your current Magic xpi project resides.

To create an environment variable called source_directory:

1. Click the Project menu and select Settings.

2. In the Settings dialog box, click Environment, General Environment and then

User Environment Variables.

3. Click Add.

4. In the Name column, type source_directory.

5. In the Value column, type the directory that you want to point to.

6. Click OK to save.

Note: General Environment variables are stored in the MAGIC_LOGICAL_NAMES

section of the Magic.ini file in your Magic xpi installation directory. Project

Environment variables are stored in the project’s ifs.ini file.

To modify the translation value of environment variables, you can open the Settings

dialog box from the Project menu, or you can change the values directly in the

configuration files mentioned above.

Flow Orchestration 59

Project-Specific Variables
Magic xpi provides four types of variables, each one valid in different areas:

global variables, BP variables, flow variables, and context variables. These variables

all have their own dedicated repository.

Each repository contains the following information:

Field Name Description

Name Variable name. Use meaningful names without spaces or special
characters. Magic xpi adds a prefix based on the variable type.

Description Free text describing what this variable is used for.

Type Defines the type of information stored in the variable. Possible
options are: Alpha, Numeric, Logical, Date, Time, BLOB.

Length The maximum number of characters for Alpha variables. The
maximum number of digits and decimal points for Numeric
variables. Not applicable to other variable types.

Default Value Define the initial value for this variable, if no other value is
assigned to it. This can be a specific value, or an expression.
Note: If an expression is used, only global variables are allowed
with the expression text.

Global Variables

The Global Variables repository is accessed by double-clicking Global Variables under

the Solution Explorer’s Repositories folder.

Global variables are available to all flows in the same project that share the same

memory address. Changes made to global variables in one flow are reflected

immediately anywhere this variable is referenced, throughout the project.

Magic xpi prefixes these variables with the letter G and a separating period. So if you

named your variable MyGlobalVariable, for example, Magic xpi will call this variable

G.MyGlobalVariable.

Magic xpi provides two predefined global variables.

 The G.sys.ServerInstance variable holds an identifier of the Magic xpi runtime
engine, and is assigned a sequential number during runtime (i.e. 1 for the first
engine, 2 for the second, etc.).

 The G.sys.ComponentLogging variable handles the control of the components’
global logging process. You can use this variable to dynamically control the
component logging. You will learn more about this variable in a later lesson.

Flow Orchestration 60

BP Variables

The BP Variables repository is accessed by double-clicking BP Variables under the

relevant business process in the Solution Explorer.

BP variables are similar to global variables, since they can share the definition and the

values among different flows. But, unlike global variables, BP variables are visible and

can be used only within flows of the same business process.

Magic xpi prefixes these variables with the letter B and a separating period.

Flow Variables

The Flow Variables repository is accessed by:

 Double-clicking Flow Variables under the relevant flow in the Solution Explorer.
 Parking on the relevant flow and pressing Ctrl+L.

Flow variables can be updated and referenced only within the flow they are defined

in.

Magic xpi prefixes these variables with the letter F and a separating period.

Flows within the same

business process.

Flow Orchestration 61

Context Variables

The Context Variables repository is accessed by double-clicking Context Variables

under the Solution Explorer’s Repositories folder.

Like global variables, context variables are defined globally for the entire project. But,

as opposed to global variables, the value of the context variable is stored separately

for each context. This means that when referring to the same variable name, you can

have two different values if the reference is made from different flows. However a

called flow runs in the same context, so the value of the variable in this case will be the

same.

When you define a parallel step, this creates a new context. Therefore the same

variable can have different values even within the same flow. You will learn more

about parallel steps in a later lesson.

Updates made to a context variable are reflected only within the same flow that the

update was made from.

Magic xpi prefixes these variables with the letter C and a separating period.

Magic xpi provides some predefined context variables that can be divided into the

following categories:

 User Variables – Used to transfer information between components and flows.
Many components update these variables with a special value. You used some of
these variables in previous lessons. Avoid using these variables to store
information, as their content may be overwritten by other steps.

 Error Variables – Updated automatically by the different components, and provide
information about the last error occurred.

 Flow Invocation Variables – These variables hold the information about the
invoking details, when a flow is invoked during runtime.

 External Call Variables – Used in external calls.

Flow Orchestration 62

Flow Logic
Flow logic is a broad term referring to the set of conditions and rules that determines

the execution path of your project.

Execution path can be determined by using:

 Conditions
 Logic flow
 The GoTo command
 Call Flow component
 Component properties (linear, wait for completion)
 Flow invocation (triggers, publish and subscribe, Scheduler)

Using these tools, you can create complex logic including branches, loops, and other

flow logic that you may need. You will learn about these during this course.

Steps and Branches

In the last lesson, you scanned a directory for a file and retrieved the file in one step.

In a different, subsequent, step, you sent an email to the salesperson. This flow had

two steps, one following the other.

Now assume that the requirement was to send a reply email to the customer to say that

his request was received by the system and would be handled shortly, what would you

do? You could add a second email step after the Send to Salesperson step. However,

this will be inefficient as these two steps are independent of one another. Why can

these steps not be executed in parallel? You can do this by creating a branch.

To create a branch:

 Select the Email component and drop it on the Directory Scanner component.
 You will now have two steps under the Directory Scanner step.

The Directory Scanner step is now the head of a branch.

? You now have two steps. In which order will they be executed?

Flow Orchestration 63

Parallel vs. Linear Execution

In Magic xpi, each component could have one of three possible processing modes:

 Linear
 Parallel
 Stand Alone

When steps are being executed in a linear mode, the Magic xpi Server executes those

steps sequentially, one after the other. The execution of the next step does not start until

the completion of the previous step.

There are situations when you will decide to execute more than one step at a time.

There are several reasons for concurrent execution such as:

 Performance – If each step is executed only after the previous step has been
completed, the flow will take a long time to execute.

 Independent steps – If a step is independent of a previous step, you can run these
two steps concurrently.

 Long executing step – When a step takes a long time, such as a step that fetches
data from a remote database, it will hold up other steps. You can, therefore, run
other steps concurrently so that this step will not hold up execution.

In the Flow Editor, as you can see the in diagram, a linear connection is marked with a

solid line, while a parallel connection is marked with a dotted line.

You can have more than one parallel step at the same level, and all
parallel steps without a condition, or with a condition that when
evaluated to TRUE will be executed.
You may also have multiple linear components at the same level, but
only one will be executed.

Flow Orchestration 64

Wait for Completion

When there are both linear and parallel steps on the same level, there are situations

where the process needs to wait for the completion of the execution of some of the

parallel steps before continuing to the next linear steps. This may be for various

reasons, such as waiting for a returned variable from a running step.

To instruct the Magic xpi engine to wait for the completion of all other steps at the

same level, there is a special Wait for Completion flag that you can set in the flow’s

properties. This flag can be specified only on steps with linear execution mode.

When the Magic xpi Server determines the next linear step to execute, it checks if the

selected step has Wait for Completion set to Yes. If so, the Magic xpi Server will wait

for the completion of all parallel steps that will process at this level. This excludes those

steps with a condition that evaluates to FALSE. Also, parallel steps with an execution

mode set to Stand Alone are also excluded from the Wait for Completion process.

When marked with Wait for Completion, a special icon will show just above the step

on the Flow Editor (see image above).

Flow Orchestration 65

Determining the Next Step to Execute

When Magic xpi completes the execution of a step, it needs to determine which steps

will be invoked next.

The Magic xpi Server scans all the non-linear (parallel or stand alone) components in

the next level, and evaluates their conditions. The Magic xpi Server then executes all

those non-linear components where the condition evaluates to TRUE, or no condition is

defined.

Among the linear components, only one component will be executed. The Magic xpi

Server scans all the linear components in the next level that have a condition defined.

The scanning order is from left to right. If the condition of a linear component

evaluates to TRUE, Magic xpi will execute this component.

If no linear component with a condition is defined, Magic xpi will look for a linear

component without a condition. If one is found, Magic xpi will execute this component.

If Magic xpi does not find any linear component to execute, the flow is terminated.

If there is more than one component at the same level where the condition evaluates to

TRUE, the condition with the leftmost component will be selected as this is the first that

will be found.

Flow Orchestration 66

Expression Editor
The Expression Editor is where you define expressions that return a specific value to the

reference point where the Expression Editor was invoked from.

An expression in Magic xpi is comprised of variables, constants, functions, and

operators.

When you want to specify a condition for the execution of the step, you need to define

a Boolean expression that will evaluate to TRUE or FALSE at runtime.

To define an execution condition, right-click on the desired step, and select Condition

from the context menu.

The Expression Editor dialog box will open and provide you with the tools to define the

condition expression. Note that the dialog box’s title will show in parentheses the

expected type of the return value (in our example – Logical).

Flow Orchestration 67

Just above the editing area, there is an icon toolbar. These are tools that can help you

when constructing an expression:

 Functions – Displays a list of functions with a short description of the
highlighted function. Enables you to paste the function into the editing area.

 Variables – Displays a list of variables, with the variable description and
type. Enables you to paste the variable name into the cursor position in the editing
area.

 Environment Variables – Displays a list of environment variables with their
current translation value. Enables you to paste the name into the cursor position in
the editing area. Magic xpi will automatically add the EnvVal function to the
selected name. This function returns the environment variable value.

 ODS – Displays a list of all ODS entries defined. You will learn about ODS
later in this course.

 Source Nodes – This option is enabled only when you access the Expression
Editor from the Data Mapper. This topic will be covered in the next lesson.

 PSS Topics – Displays a list of the PSS variables that you defined in the PSS
Topics Repository. These variables are used for working with Publish and Subscribe
(PSS) utilities. PSS lets you define an event so that when the event occurs in your
integration project, the event is published.

 Insert Filename – Opens the standard Windows Open dialog box and enables
you to select a file. The selected file is pasted to the editing area at the cursor point
as a string literal.

Flow Orchestration 68

When typing in the Expression Editor, you can type the first few letters of a function

and press CTRL+Space. This will open a list of functions and the selected value in the

list will be the one closest to the string you have typed. Like the assistors mentioned

above, you can selected the highlighted function and paste it into the editing area at

the cursor position.

It is good practice to verify the validity of the expression before you close the

Expression Editor dialog box.

Flow Orchestration 69

Exercise
1. Add two new variables to be used in the Directory Scanner component in place

of the predefined context variables:

 F.RequestXML – a BLOB variable which will hold the request itself.
 F.RequestFileName – Alpha 255 variable.
 Use these variables in the Directory Scanner.

2. Use a global variable for the Email component for the person who will receive

the email. In the previous lesson, you hard-coded the To field with an email

address. Now you will use a global variable to define the To email address.

Enter the following information for the variable:

 Name – EmailTo
 Type – Alpha
 Length – 100
 Default Value – Salesperson’s email address (for example:

postmaster@magicxpi.com)
 Add this global variable to your Email step.

3. You do not want the Email component to process if the moving of the file was

unsuccessful. Put a condition on the Email component, so that if the file name is

blank, the flow will be terminated.

4. Add the following flow variables (you will need them in the next lesson):

 F.CustomerEmail – Alpha variable, length 100
 F.CustomerName – Alpha variable, length 30
 F.ContactName – Alpha variable, length 30
 F.CustomerId – Numeric, size 9

Summary
In this lesson, you learned about the different variable types supported by Magic xpi,

and about the flow logic that determined the actual execution path at runtime.

After completing this lesson you will be able to:

 Specify the different types of variables in Magic xpi.
 Understand the definition scope and data scope for each variable type.
 Explain how Magic xpi decides which steps to execute.
 Write an expression for a step condition.
 Specify a step’s execution mode.

Flow Orchestration 70

Checking Customer Existence 71

Checking Customer Existence
A central part of any integration project is data transformation. In Magic xpi, one of

the main tools used for data transformation is the Data Mapper. In this lesson, you will

be introduced to the Data Mapper utility. This enables you to create associations

between records and fields in different formats from different sources by using visual

mapping. This utility is one of the most widely used utilities in the Magic xpi Studio.

Once the system receives a new request and the file is moved to the appropriate

directory, the system then needs to validate the input. The first step in this process is to

check whether the customer exists in the local database.

7 Lesson

Checking Customer Existence 72

Data Mapper
You can think of the Data Mapper as a tool that reads from a source and writes to a

destination, a "Read/Write" scenario. You can have a number of different sources and

a number of different destinations.

The Data Mapper utility is used for any of the following:

 Creating or updating files in XML, HTML, or flat file formats.
 Creating, updating, and deleting a set of database records.
 Calling a flow and passing variables.

Magic xpi enables you to map source data to destination data. Source data can be

one of the following:

 XML
 Database (Select statements)
 Flat file (a text file or CSV file)
 JSON
 Variables
 ODS or UDS entries

Destination data can be one of the following:

 XML
 Database (Insert/Update/Delete statements)
 Flat file (a text file or CSV file)
 JSON
 Variables
 ODS or UDS entries
 Call flow
 Template (usually HTML or RTF)

Checking Customer Existence 73

The properties of the Data Mapper utility are the same as the other components

learned about in the previous lesson.

Do the following:

1. Drop a Data Mapper utility as a child step of the Send Email to Sales step.

2. Name the step Extract Details from Request.

3. Double-click the Data Mapper utility, or right-click on it and select

Configuration from the context menu to open the Data Mapper window.

Data Mapper Window

The Data Mapper window enables you to configure the source objects and the

destination objects.

You can have multiple sources and destinations. For each of the entries you will need

to define the properties. Each set of properties will be different, depending on the

object type. For example, Variable properties will be different from Database

properties.

In the image below, you can see an XML file as a source and flow variables as a

destination. When the source and the destination are configured and connected, and

this step is executed, the Data Mapper will map elements from an XML file to variables.

The Data Mapper must have at least one destination object.

Checking Customer Existence 74

In the previous lesson, you used the Directory Scanner component to move requests

that are received to a different directory for processing. To process that request, you

will need to pull the request information from the XML file and put that information into

variables that you can pass to a different step.

For this example, the source type will be XML and the destination type will be

Variables.

Every type in the Data Mapper has a different set of properties. To set
the properties for a specific entry, right-click on it and select
Show Properties.

In the current lesson, you must define properties for the XML source
and for the Variables destination. In most cases, the properties will be
the same regardless of whether the specific type is in the Source Tree
or the Destination Tree.

Do the following:

4. From the Toolbox’s Mapper Schemas section, drag an XML source into the

Data Mapper window’s Source Tree area.

5. Right-click on the XML source and select Show Properties.

6. Enter Request in the Name property.

Checking Customer Existence 75

XML Properties

Property Description

Name The XML Source’s name.

Description A detailed description of what the XML file is for.

XSD File This is the path to the XML schema. You have to specify the
exact path and file name for the XSD file.

XML Root Select the XML root that you want to map data from.
Note that you will only be able to park on this field when there
is more than one root element in the XSD file. Magic xpi will
default to the first root element that it finds.

XSD Sub Type The Source schema's subtype. Select one of the following
options:

 File
 IFC Model
 XML Position Forwarding (Source only)

IFC Model This property lets you select a predefined XSD to use as XML
data. This provides an easy way of using the XML Schema
Definition (XSD) for any flow component.

XML Position
Forwarding
(Source only)

This option enables the XML Source data to start mapping from
the saved start position, by calling the flow.

For example, if you have an order entry, where each XML
order file includes one order header and multiple order items,
the order header is handled in the main flow. The multiple
order items are handled in a second (called) flow. If you select
XML Position Forwarding, the called flow handles single order
items instead of reprocessing the entire XML.

Source Type There are various options for the source of the data:

 File – This is an external XML file, where the data is being
stored. If you select this, you can click on the button in
the File Path field to enter an expression for the file.

 Variable – This is a BLOB variable that the data is stored in.
If you select this, you can click on the button in the
Variable field to get a list of valid variables.

XML Validation This validates that the XML is in a valid format according to the
schema, before you start mapping. If the XML is not in a valid
format, you will get an error.

Checking Customer Existence 76

Property Description

Recursion Depth This property will determine how many times the structure of the
selected XML file repeats.
Example: If a parent node in the XML structure contains three
children, enter 3 to repeat the structure three times. For no
recursion, leave the default of 1.

Data Format This property lets you define the defaults that you want
Magic xpi to use when presented with a certain data type.

Use Streaming Parser
(Source only)

Select this check box to use a streaming XML parser. This
allows the Data Mapper to handle large XML documents.

Do the following:

7. In the XSD File property, click the button and

select request.xsd, which is located under:

%currentprojectdir%\course_data\schemas

8. Select Variable in the Source Type property.

9. In the Variable field, click the button and select

F.RequestXML from the list.

Checking Customer Existence 77

Variable Configuration

You are able to select which variables will be used in the subsequent Data Mapper

screen. In this example, you will be mapping from the Request XML to defined

variables.

Do the following:

10. From the Toolbox’s Mapper Schemas section, drag a Variable destination into

the Data Mapper window’s Destination Tree area.

11. Right-click on the Variable destination and select Show Properties. In the

Properties pane, enter Variables in the Name field.

You will now select some variables that you defined in the previous lesson:

12. In the Variable destination’s Properties pane, click the Variables field’s

button.

13. In the Destination Properties dialog box, select the following variables:

 F.ContactName
 F.CustomerEmail
 F.CustomerId

Checking Customer Existence 78

Mapping Sources to Destinations

The last step for the Data Mapper is to map the request to the defined variables. To

map:

14. Expand the source by clicking Request.

15. Expand the Request node.

16. Expand the CustomerDetails node.

17. Expand the destination by clicking Variables.

18. Expand the Instance node.

19. In the Source Tree, select Customer_ID.

20. Right-click and select Connect from the context menu.

21. Drag the line to the F.CustomerId entry in the Destination Tree.

A white line will appear connecting the source to the destination. A double white line

will appear connecting the request to the instance. This line denotes that for every

occurrence found in the XML, it will be copied to the F.CustomerID variable. Note that

a blue color for the connecting line simply denotes the connection currently in focus.

For example, there were three occurrences of the CustomerID in the
XML. Therefore, Magic xpi would update F.CustomerID with a loop of
the three values. But because this is a variable, only the last one
would be saved in the variable.

22. In the Source Tree, expand the ContactDetail node.

23. Connect ContactName to F.ContactName.

24. Connect Contact_email to F.CustomerEmail.

Checking Customer Existence 79

25. Right-click on the Scan for New Requests flow and then select Properties. In the

Properties pane, set the Auto Start field to Yes.

26. Set a breakpoint on the Extract Details from Request step.

27. Run this flow using the Debugger. Once the Debugger reaches the breakpoint,

you will see that the flow variables were updated with values fetched from the

XML.

Checking Customer Existence 80

Checking for Customer Existence
Now that you have pulled the customer information from the request XML, you can

check whether the customer exists in the local database. You would not want to create

an order if the customer does not exist. The next step for the integration project is to

validate the customer data.

When working with data, you often need to use database tables. You fetch data from

tables according to a set of rules and you write data to tables.

For example, after receiving a request with a Customer ID, you need to check whether

that client is a customer in the local database and what the customer's credit rating is.

If the client is not a customer, you will need to add the client to your database.

The Data Mapper utility provides the tools needed to work with databases.

A database object may be used as either a source or a destination object in the Data

Mapper. However, as discussed earlier, the mapping of a source to a destination is a

Read/Write scenario; therefore, not all database operations are valid in both trees.

The valid options are:

 Select – Source
 Insert – Destination
 Update – Destination
 Delete – Destination

A database is an external resource, so it should be configured in the
Resource Repository before continuing. You created the database
resource in the Resources lesson.

Various MSSQL tables are used in this course. For information on the various tables

and how they connect to one another, please look at the Course Data section, which

you can find right before the Solutions appendix.

Checking Customer Existence 81

In this example, you want to check whether the customer exists in the database. This is

an SQL Select statement. Therefore, the database is defined as the source in the Data

Mapper.

To check the existence of the customer:

1. Drag a Data Mapper utility as a child step of the Extract details from request

step. Name this step Check if the Customer Exists.

2. Double-click the Data Mapper utility, or right-click on it and select

Configuration from the context menu to open the Data Mapper window.

3. From the Toolbox’s Mapper Schemas section, drag a Database source into the

Data Mapper window’s Source Tree area.

4. Right-click on the Database source and select Show Properties. Set

CheckCustomer as the Name.

The following details can be defined:

 Wizard – You can create an SQL statement visually with the Database Wizard.
 SQL Statement – You can create an SQL statement manually.
 Dynamic SQL Statement – You can determine whether you want to write your own

INSERT/UPDATE/DELETE statements, which will be executed "as is".
 Database Definition – A list of the defined resources for databases. If you have not

previously defined a resource or want to add a different one, you can click the
New option in the dropdown list, which will enable you to add a new resource.

 DB Disconnect – Defines whether all open connections to the database will be
disconnected at the end of the step.

 Error Handling Flow – Enables you to handle exceptions using a specific error flow
mechanism. This is only valid for Database operations that are defined as
destinations.

When the Database is used as a source, the only DB Operation that
can be defined is Select.

Checking Customer Existence 82

Magic xpi offers two modes of configuration:

 Wizard – This will guide you through the necessary steps to create a valid SQL
statement.

 SQL – This enables you to enter your own SQL statement.

During this course, you will use the wizard.

5. In the Properties pane’s Wizard field, click the button. The Database

Wizard opens.

The wizard shows a list of the tables found in the database. There are two selection

panes which enable you to select which tables will be used. You use the buttons to

select the tables. In the Selected Tables list, there is a list of tables that have been

selected. If you want to remove a table from the list, you can park on it and click

Remove. To select the Customers table:

6. Park on the Customers entry in the Available Tables pane.

7. Click Add. The Customers entry is removed from the Available Tables pane

and is added to the Selected Tables pane.

Checking Customer Existence 83

There are various modes of filtering and sorting the entries in the Select Tables view:

 Filter Definitions Only – This check box lets you select the owner and the tables that
will be fetched for the Select Table operation. You can select a specific owner and
view all of this owner's tables, or you can select only a subset of these tables.

 Available list by owner – This enables you to filter the list according to a certain
owner or to display all of the tables. Bear in mind that there may also be system
tables in the list.

8. Click Next. The Select Columns dialog box opens.

The Select Columns dialog box displays a list of the columns or fields found in the

tables that were selected. The Display Field Order field lets you define the order in

which thedatabase fields will be displayed – either as defined in the table or in

alphabetical order.

In the Select Columns dialog box, you select which table columns will be fetched from

the tables. Remember that the result will be a database SELECT statement. The columns

displayed are those that are defined in the tables you selected in the previous step.

9. Park on the CustomerName entry in the Available Columns pane.

10. Click Add. The CustomerName entry is removed from the Available Columns

pane and added to the Selected Columns pane.

Checking Customer Existence 84

You have selected the table that you want to use (the Customers table) and selected the

column you want to display (the CustomerName). Now you need to fetch an entry that

matches the CustomerID from the request. This is performed with the SQL WHERE

clause of the SELECT statement. A WHERE clause enables you to filter the number of

records that will be fetched.

11. Click Next. The Where Clause dialog box opens.

You are provided with two lists:

 Available Columns – A list of all the columns in the tables you selected.
 Variables – The list of variables that you can use.

To select an item from the list, you need to park on it and double-click. You may select

any entry more than once.

12. Park on [Customers]CustomerID in the Available Columns pane and double-

click. [Customers]CustomerID is added to the Where Clause Text pane.

13. Park on the Where Clause Text pane and type = after [Customers]CustomerID.

The text should now read: [Customers]CustomerID =

14. Park on F.CustomerId in the Variables pane and double-click. The text should

now read: [Customers]CustomerID = <?F.CustomerId?>

You may also manually type in <?F.CustomerId?>. The name of the variable is

enclosed by <? and ?>. These are internal Magic xpi symbols that will be

replaced in deployment by the value found in F.CustomerId.

Checking Customer Existence 85

Order By

You can click the ORDER BY Clause field’s Configuration button to define the ORDER

BY clause that will be sent to the database in the SELECT statement. The ORDER BY

clause will then appear in the ORDER BY Segments pane. This clause enables you to

define how you want the results to be sorted. In the current example you are expecting

a single result, if any, and therefore there is no need for an ORDER BY clause.

After clicking Next, you are presented with the Summary dialog box. Here you see the

result of what you previously defined. You can make changes to the SQL statement if

necessary.

The next stage is to map the record retrieved by the Data Mapper to a variable. You

already learned how to do this earlier in this lesson.

15. From the Toolbox’s Mapper Schemas section, drag a Variable destination into

the Data Mapper window’s Destination Tree area.

16. Right-click on the Variable destination and select Show Properties. In the

Properties pane, enter CustomerName in the Name field.

17. In the Variable destination’s Properties pane, click the Variables field’s

button.

18. In the Destination Properties dialog box, select the F.CustomerName variable.

19. Expand the source and the destination.

20. Connect the CustomerName node on the source to F.CustomerName in the

destination.

If no record is found, F.CustomerName will be blank.

Checking Customer Existence 86

Exercise
The following steps will only be performed if the customer exists in the database.

1. Pull the Contact ID from the Request XML. You will need to create a flow

variable to accomplish this.

2. Now that you have the Contact ID from the Request XML, you need to check

that ID against the Contacts table to see if the contact exists.

3. If the contact does not exist, add an Email component to send an email back to

the customer stating the following 'You are not registered as an official contact

for your company. Please approach your representative. '

Summary
In this lesson, you learned about the Data Mapper utility. You learned how to:

 Add a Data Mapper to a flow and define the properties.
 Use the Data Mapper to extract information from an XML.
 Use the Data Mapper to fetch information from a Database table.

Runtime Environment 87

The Runtime Environment
Up until now, you checked for files and sent emails using the Debugger. Now you will

learn more about what goes on behind the scenes. When you eventually deploy your

project, you will not be using the Debugger and you will not be running the

Magic xpi Studio. The program that actually executes your program is the

Magic xpi Server.

As you already know, a Magic xpi project is comprised of business processes

containing flows, and within each flow there are several steps. Each step is a

representation of a component that performs some actions.

As you develop a project, you provide instruction and configure each component. You

also provide flow logic that instructs Magic xpi what component to execute, and in

what order.

When you want your project to execute, you start a background process that reads

those instructions and executes the components according to the flow logic. This

background process is the Magic xpi Server.

Lesson
8

Runtime Environment 88

The Executable File
When you installed the Magic xpi Suite, the installation program installed several

components. These include the Magic xpi Studio, the Magic xpi Server, the Magic

Monitor, and the GigaSpaces middleware.

When you are in development mode and save the project, Magic xpi saves the project

definition files in XML format in the <My Documents>\Magic\projects\<Project

name>\current project\Source directory.

The first step in executing a project with the Magic xpi Server is building an executable

file. When you want to deploy your project, you need to save the project as an

executable file (ibp).

To do this:

1. Open the Build menu.

2. Select the Build Solution option.

If the file was already built, you can select Rebuild Solution, or simply press

CTRL+SHIFT+B.

 Build Solution – Uses a number of optimization rules on the generation process of
the modified objects to create the executable file (ibp). Magic xpi saves the project
(only the modified objects), loads the project files and runs the Checker on the
project level. If the Checker finds any errors, Magic xpi does not build the project.
Note that when using the Build Solution option, the Magic xpi Checker does not
check for variables that are not in use.

 Rebuild Solution – Ignores the optimization rules. Magic xpi saves the project,
loads the project files and runs the Checker on the project level. If the Checker
finds any errors, Magic xpi does not build the project.

Runtime Environment 89

When the Magic xpi Server loads, it executes in the background and as such has no

user interface. It automatically loads a project and executes it. The project that is

executed is determined by two environment variables:

 currentprojectdir – This variable holds the path to the folder where all the project
files reside, including the project file itself. If you did not change the default setting,
this folder contains the name of your projects. It is located in the projects subfolder,
which is in the Magic xpi installation folder.

 currentproject – This variable holds the complete path and file name to the project
file itself. This file was created when you built the executable file.

Both of these environment variables are predefined, and are updated automatically by

the Magic xpi Studio.

When you build an executable file, the Magic xpi Studio updates the project shortcut

on your Windows Start menu. This enables you to control the execution of the project

using the Magic xpi Server.

Under the Projects folder, you will find an entry with the name of your project, and two

shortcuts in a submenu. These are:

 Start – Starts the Magic xpi Server, if it is not already running,
and runs the project.

 Stop – Stops processing the project.

Runtime Environment 90

Executing a Project
When a Magic xpi project starts, the Magic xpi Server loads the project metadata and

performs a series of initialization activities. The following list describes the Magic xpi

project’s initialization phase:

 The Magic xpi Server is assigned a Server ID.
 Magic xpi reads the environment variables and loads the project executable file

(Magic xpi_course.ibp).
 If a project is not running yet, the first Server that starts will create the project in the

Magic Space.
 The server can now start handling requests.

At this point, the Magic xpi Server executes the project according to the flow logic.

Each activity is logged in the messaging system and can be viewed using the

Magic Monitor (see later in this lesson).

The Flow Manager is the part of the Magic xpi Server that is responsible for the actual

execution of the flow. After a component is executed, the Flow Manager checks for

errors by examining the error return code, and executes the internal error handler or

invokes the error flow. If there are no errors, the Flow Manager checks the return status

code and executes the internal logic handler or the logic component, if one is defined.

Once the internal variables are set, the Flow Manager decides which component will

be executed next, based on the flow logic. You will learn more about error handling

later in this course

The Flow Manager is also responsible for calling steps in a different Server, using the

Magic xpi routing system, if the next step is set to run on a remote Server.

If transactions are defined, the Flow Manager is responsible for managing the

transaction by sending Start Transaction, Commit, and Rollback commands as

required.

Runtime Environment 91

Magic Monitor
The Magic Monitor is a tool that enables you to track the execution of your project by

giving you accurate information about your projects in a single intuitive and easy-to-

use dashboard. You can view the information for whole projects or you can select

different levels within projects, and you can use filters to display information from

specific times. The information displayed is updated regularly. The status of each

project is taken from the Space.

You open the Monitor from the Windows Start menu's Magic Monitor shortcut. By

default, this link points to the local host. You should change it to link to the host running

the Magic Monitor services:

1. Right-click the Magic Monitor shortcut in the Start menu.

2. Select Properties.

3. The Magic Monitor Properties dialog box opens.

Runtime Environment 92

4. Change the URL to point to the host running the Monitor services. If, for

example, the host that runs the Monitor services is 10.1.3.75, you would

change the URL to: http://10.1.3.75:8068/magicmonitor/panels.jsp

Note: By default, the Magic Monitor Web Server uses port 8068. To change this port,

open the <Magic xpi installation>\Runtime\RTView\servers\apache-tomcat-6.0.18-

sl\conf\server.xml file, and then change the Connector port parameter to any non-SSL

HTTP/1.1 port.

The Magic Monitor shortcut will open a link in a browser and the following login

screen will appear.

The login details are:

 Username – admin
 Initial password – changeit

When you open the Magic Monitor, you see the Magic xpi Dashboard. This displays

top-level information about all the projects that are connected to the server, such as

license details, Space status, threads in use, and messages. To get more detailed

information about specific projects, you can click one of the links that are grouped

together under Actions.

Runtime Environment 93

This opens the Magic xpi Projects Dashboard.

This consists of two main areas:

 Projects pane – On the left of the screen, this shows a list of available projects. You
can control your projects using the Start, Stop, and Restart buttons.

 Project View – Covering the rest of the screen, this gives you detailed information
about your projects, including messages, license usage, available workers, alerts,
and trigger activity. You can adjust the time span of the displayed information.

At the top of the Magic xpi Projects Dashboard, you can click the Messages, Flows,

Triggers, Servers, Locking, Subscription, Scheduler, Activity Log, ODS, BAM, and

Summary tab buttons to navigate to specific project information.

Runtime Environment 94

Activity Log

The Magic Monitor’s Activity Log tab displays detailed information about the

Magic xpi Server log messages. There are various check boxes and dropdown lists

that enable you to filter the information that is displayed. You can add your own

messages to this log, as you will learn in the next section.

Name Description

Date & Time This column displays the date and time the message was written to
the log. The time is displayed in milliseconds.

Message Type The message that is written to the log. The message describes the
action taking place. Messages displayed include:

 When the Server started and when it ended.
 When the flow started and when it ended.
 When the component started and when it ended.
 An error message appears in red.

Message String This column displays the text attached to the log process. This text
has additional information about the execution process.

FSID This is the flow sequence ID in the execution process. If the message
is general, and not part of a flow, this number is zero.

BLOB This column holds any BLOB file that is part of the message.

Runtime Environment 95

Exercise
In previous lessons you used the Magic xpi Debugger to see Magic xpi in action. You

will now run the project using the Magic xpi Server. You can use the following

checklist:

 Save your project.
 Build an executable file.
 Open the Magic Monitor.
 Execute the Magic xpi Server for your project.
 View the project’s details in the Magic Monitor.

Summary
In this lesson, you learned about the Magic xpi Server and the Magic Monitor.

You will now be able to:

 Build execution files from the Magic xpi Studio.
 Start and stop the Magic xpi Server for a specific project.
 Start the Magic Monitor.
 Navigate between Monitor views.
 View specific project information.

Runtime Environment 96

Testing Your Project 97

Testing Your Project
You learned how to develop an integration project, and you learned how to deploy it.

Before moving your project to production, you need to test your code and make sure it

works correctly.

Magic xpi provides several tools to help you test and debug your project, so that you

can deliver it error-free.

In a previous lesson, you were introduced to the Magic xpi Debugger. This enables

you to test your flow. You will learn more about the Magic xpi Debugger in this lesson.

This lesson covers:

 The Magic xpi Checker tool
 Additional Magic xpi Debugger functionality

Lesson 9

Testing Your Project 98

Magic xpi Checker
The Magic xpi Checker is a utility that resides in the Magic xpi Studio itself. It

examines the way that the components and flows are defined, and checks for errors in

the configuration and definitions.

The Checker starts automatically when you start the Debugger, or when you save an

executable file for deployment.

The Checker will disable part of the project or the whole project, if errors are found, as

follows:

 When activated with the Debugger, an executable file will not be created at all.
 When activated as a part of the Build Executable File process, flows with errors

will be changed to an inactive state. It is therefore possible that the entire project
will be inactive.

The Checker can also be started manually:

 From the Project menu, select Checker... and then Run to run the Checker on the
whole project (this option can be activated by typing CTRL+R).

 From the flow’s context menu, select Checker... to check the selected flow only.

The Checker does not check any logic within the step.

Testing Your Project 99

Checker Results

If errors were found, the Checker will open a dialog box listing all the errors.

The information displayed is as follows:

The Checker Results screen lists every item checked and indicates areas where there is

an error. The errors are displayed with an indication of their severity on the following

levels:

Type Description

Error This is the most severe level. It indicates a fatal error, which means
that the step will not work.
An example of a severe error is: Missing component configuration.
This indicates that mandatory configuration information is missing
from the component.

Warning This indicates an error that does not prevent the step from executing.
Results at deployment might not be what you expected based on your
project definitions.

Information
Message

This indicates efficiency-type problems, such as a timeout setting that
is not defined, or insufficient Server capabilities for the relevant flows.

The filter buttons at the top of the Checker Results screen let you define which types of

Checker messages to display.

You can double-click on a line in the Checker Results dialog box to go
straight to the location that generated the error, warning, or
information message.

Testing Your Project 100

Magic xpi Debugger
The Magic xpi Debugger tool is a part of the Magic xpi Studio that enables you to test

your integration project during the development stage.

The Debugger runs your project or attaches to a running project. It gives you the ability

to control and view execution sequences, flow variables, the calling of Magic xpi

services, and breakpoints. You can execute steps one at a time, or you can run the

execution automatically until you reach a breakpoint.

Magic xpi executes the project in Debug mode using the running Server engine.

You can view all property-type settings for steps, but only in read-only mode. To make

any necessary changes, you will need to stop the Debugger process, go back to the

Flow Editor and make the changes, and then return to the Debugger to restart the

process.

Starting a debug session can be done by one of the following methods:

 Open mode – Opens a project on a local machine. You can do this from
the Debug xpi menu by selecting Start Debugging, by pressing F5, or by
clicking the Debugger icon in the toolbar.

 Attach to Project mode – Attaches to a running project on a local or remote
machine. A project can consist of many Servers. This option lets the Magic xpi
Studio debug running projects. You do this by selecting Attach to Project from the
Debug xpi menu.

In a previous lesson, you selected Debug from the flow’s context menu
to debug a specific flow. However if you select to debug a specific
flow, any other flows in the project will be disabled.

Testing Your Project 101

When opened, the Debugger has two different modes:

Option Description

Stopped The Server is waiting for a command and will not execute until it receives one.

Running The Debugger is currently running one flow or more.

The current mode is displayed in the form header, as shown in the image below.

To execute the Debugger, you need to select Start Debugging from the
Debug xpi menu or the icon from the toolbar.

Testing Your Project 102

Controlling the Debugger

Various additional options are available from the Debug xpi menu, which enable you

to control the Debugger.

The following options are available when the Debugger’s mode is Stopped.

Menu Option Description

Windows Opens the Breakpoints and Suspends pane and the Output pane.

Start Debugging Runs the project until a breakpoint is reached, or there are no
more steps to execute.

Attach to Project Lets you start the debug session in Attach to Project mode.

Toggle Breakpoint Adds or removes a breakpoint from the current step.

Project Settings Opens the Debugger Settings dialog box. Here, you can define
the refresh rate timeout and other debugging options.

Settings Opens the Options dialog box and takes you directly to the Magic
xpi Debugger section's General settings. Here, you can configure
the Debugger's timeout settings for your project.

The following options are available when the Debugger’s mode is Running.

Menu Option Description

Windows Opens the Breakpoints and Suspends pane and the Output pane,
as well as other various panes.

Continue Continues the execution of all threads after a break.

Restart The Debugger is stopped and reset, and project execution is
restarted.

Break All Stops the execution of the project as soon as the execution of all
currently running steps is completed.

Step Execute single step. Active only when the Debugger is in Stopped
mode.

Stop Debugging Stops the debugging process.

Scheduler Lets you see the upcoming events schedule when you reach a
breakpoint in the flow, based on your Scheduler table.

Context View Opens the Context View for the currently selected step.

Settings Opens the Debugger Settings dialog box.

Testing Your Project 103

Setting a Breakpoint

Breakpoints are a helpful debugging tool. They enable you to halt

execution of the flow on a specific step.

Once a breakpoint is reached, all of the executed contexts, such as

threads and branches, are stopped before they execute the next step.

The Debugger then waits until the user selects Step or Continue.

To activate the breakpoint on a step, select the step and then select

Breakpoint from the context menu.

When a step has a breakpoint defined, the breakpoint image () will

appear in its top left corner.

In the image on the right, you can see the step that is marked as a

breakpoint.

Suspending a Step, Flow, or Branch

When debugging, you may want to suspend certain elements to

better pinpoint a problem.

A suspended step will be ignored, and the Debugger will continue

to the next step as if the step was executed.

A suspended flow will not be executed, and will be considered

“stopped” until released from that mode.

The same method described on this page can be used to suspend a

flow or branch.

To suspend a step, select the step and then select Suspend Step from

the context menu.

When a step is defined as suspended, its icon and text will appear

dimmed.

In the image on the right, you can see the step that is suspended

since it is dimmed.

The top-most (root) step and the bottom-most steps do not have the

Suspend Branch option.

Testing Your Project 104

Context Tree

The Context Tree displays the status of the loaded contexts of a project in the Server.

The tree is only refreshed when you select the Break option, or when the project

reaches a breakpoint. When a breakpoint is reached, the refreshing process is

terminated. You can also click Refresh to refresh the displayed thread statuses.

There is only one active debug context available at a specific time. The first context

that reaches a breakpoint is set as the active debug context. You can set any context

as the active debug context by right-clicking and selecting Set Active Context. When in

Step mode, the focus of the debugging process is always on the active context. You

can only step through a context if it is set as the active debug context. You will learn

about running other contexts later in this course.

The Context Tree uses various colors and indications to provide you with additional

information, as follows:

 Yellow – The active debug context. If the active debug
context is on the linear path, it will be in bold and
highlighted in yellow from top to bottom (including the
highest parent). If the active debug context is not on the
linear path, only the parallel context will be highlighted in
yellow.

 Gray – The context path.
 Green – Contexts that are still running.
 Black – All contexts that have stopped, but not at a breakpoint.
 Bold – An active debug context on a linear path, and an actual active step in the

active debug context.
 Regular – All other contexts, except the one that you are parked on.

The Context Tree uses various icons to enable you to quickly identify each context type.

The icons used in the image displayed above are:

 Auto Start

 Linear Step

There are other icons available. You can view them in the Magic xpi Help.

Testing Your Project 105

Context View

The Context View form provides you with all the internal information stored for the

currently running view.

This option is available only when the Debugger has stopped; for example, at a

breakpoint. It shows the values of all variables in the scope of the current context of the

current step, the highlighted step in the Context Tree.

To activate the Context View, make sure you are parked on the correct step and then

select Context View from the Debug xpi menu. Alternativey, you can right-click on the

highlighted step in the Context Tree, and then select Context View.

The Context View form has four tabs, one for each type of Magic xpi variable.

You can change the variables’ values from this dialog box. This is very useful when

debugging a project.

Testing Your Project 106

Adding User Messages
When you run the project using the Debugger, you can set a breakpoint and the

process stops at that point. However, when debugging, you may find that you need to

add your own messages to the log for testing purposes, often at a point before the

current breakpoint. You can even decide to run the entire flow and view your test

messages at the end of the flow.

By adding debug information, you are better able to debug a component.

You can add your own messages by:

 Using the Logging properties of the component that you want to debug.
 Adding a Save Message utility.

Logging Section

The Logging section is one of the sections in a component’s Properties pane. You are

able to specify any string and/or BLOB information to be sent to the Magic Monitor’s

Activity Log tab.

You have the option to send only a string message, a BLOB variable, or both.

Logging Scope

Using the Logging Scope property, you can specify when the information is to be sent

to the Magic xpi Activity Log view.

The possible options are:

 No – Nothing will be written to the Activity Log tab. This is the default.
 Step – Magic xpi will write information to the log for the entire step.
 Method – Magic xpi will write information to the log for each method in the step.

This will be carried out after the method was executed.
 Full – Magic xpi will write information for both the Step and the Method options.

The XML interface does not allow Method level logging.

Testing Your Project 107

Step Logging Options

This property is only relevant if either Step or Full is selected in the Logging Scope

property. The property defines when the information will be logged to the Monitor.

The available options are:

 Before – Information will be logged before starting the step.
 After – Information will be logged after the step has finished its execution.
 Full – Information will be logged before and after execution of the step.

As an example, add logging details to the Logging tab of the Send email to Sales

component. In this example:

1. Park on the Send email to Sales step.

2. Go to the Logging section of the Properties pane.

3. Define the Logging Scope as Step.

4. Define the Step Logging Options as Before, meaning that the information will

be written to the log before this component begins executing.

5. Define the Message. A string message, A request was received, will be written

to the log enabling you to easily identify the message.

6. Define the BLOB. You want to view the content of the user request that was

fetched by the Directory Scanner component and saved in the F.RequestXML

variable.

7. Define the File Extension. Since the request file is in XML format, when you

define the extension as XML, the file will be opened in the XML viewer defined

on your system.

Testing Your Project 108

Exercise
Now that you have learned about the Magic xpi Debugger and Checker, it is time to

try them on your project:

 Run the Checker on your project.
 Add a breakpoint on the Extract details from request step in your project, and then

run the Debugger in Step mode.
 Run the Debugger again, but this time let the Debugger run without breakpoints.

Summary
In this lesson, you learned how to:

 Check your project for errors using the Checker.
 Debug your project using the Debugger.
 Create breakpoints, and suspend part of the project.
 View and change the values of variables.

Item Validity Check 109

Item Validity Check
Mapping data is the most common operation in integration projects. The Magic xpi

Data Mapper utility provides an easy-to-use interface to transform data from various

source formats to various destination formats.

According to the business scenario, once the system receives a new request and the

check for the customer is successful, the system will then need to check that the

requested items exist in the database.

In this lesson, you will:

 Use the Flow Data utility to update variables and to store the request data in an

ODS.

 Call a flow that checks the stock availability for each of the request's items.

Lesson 10

Item Validity Check 110

Flow Data Utility
The Flow Data utility is used to manipulate variables, ODS, and User Parameter data.

You can insert, update, clear, reset, and delete the selected data item.

The following table describes the different parameters of the Flow Data utility:

Parameter Description

Action The type of action to be performed:

 Update – Adds or inserts data in the target flow data.
 Clear – Clears all of the data in the target data flow.
 Reset – Resets a variable to its original value (does not work

with ODS or Environment variables).
 Delete – (ODS only) Deletes an ODS entry from the database.
 Insert – (ODS only) Inserts data to an ODS array.

Type The type of the target variable that the action will be performed
on:

 Flow
 Context
 Global
 Business Process
 ODS Global
 ODS Local
 Environment

Dyn Dynamic variable name. When checked, the variable name is
determined by an expression.

Name The name of the target variable. When the action is Delete, and
the type is ODS, you can leave this field blank in order to delete
all ODS variables.

Data Type The data type of the variable. This type is filled in by the system
based on the target variable that you selected. You can select the
type only for ODS when the action is not Delete.

Encoding The encoding type for updated BLOB and Alpha variables.

Index The index of the ODS record in the ODS data array.

Update Expression The value of target variable in an Update action will be updated
with the return value of this expression.

Condition The return value of this expression (must be Boolean expression)
will determine if the selected action will be performed.

Item Validity Check 111

Using the Flow Data Utility

First, you will need a variable that will contain the request number. This will be a flow

variable. Later in the lesson you will be checking to see whether the items requested

exist in the database. Therefore, you will need a variable that will indicate whether all

items are available in stock. This variable will be used in more than one flow and

therefore will need to be a context variable.

1. In the Solution Explorer, under the Scan for New Requests flow, double-click

Flow Variables and add the following variable to the Flow Variables

repository:

 F.RequestNum with a type of Numeric and size 5.

2. In the Solution Explorer, under the Repositories folder, double-click

Context Variables and add the following variable to the Context Variables

repository:

 C.All_Items_Exist with a type of Logical.

In the company scenario, the request will be added to the system even if the company

is unknown. This will be in two separate threads.

3. Park on the Check the Contact step.

4. From the context menu, select Properties.

5. Set the Processing Mode to Parallel.

You need to initialize the C.All_Items_Exist context variable and save the request

number in the F.RequestNum flow variable.

6. Add a Flow Data utility as a child step of the Check if the Customer Exists step.

7. In the Properties pane’s Step Name field, type: Get Req number from FileName

8. In the Description field, type: This service updates the RequestNum variable

and initializes the All_Items_Exist variable that will be used later on.

9. Double-click the Flow Data utility, or right-click on it and select Configuration

from the context menu to open the Flow Data Configuration dialog box.

10. Click Add to add commands.

Item Validity Check 112

The request number is fetched as part of the physical file name. When the Directory

Scanner scanned for requests, it scanned according to the following mask:

request???.xml. As an example, if the Directory Scanner finds a file named

request003.xml, then the request number is 003. This three digit number is the number

you must retrieve using Magic xpi functions. The actual file name returned by the

Directory Scanner includes the full path, which complicates the final expression.

To retrieve this number you will be using the following functions in the next step:

 Trim – This removes trailing blanks from both the left and right sides of the
expression, so you will use: Trim(F.RequestFileName)

 Right – This function fetches a number of characters from the right side of the
expression. The idea is to retrieve the value 003.xml, which is 7 characters from
the right, so you will use:
Right (Trim (F.RequestFileName), 7)

 Mid – This function retrieves a string from within another string. You set the start
point and how many characters you want to retrieve. The previous expression left
you with 003.xml. All you need is the first three characters, 003, so you will use:
Mid (Right (Trim (F.RequestFileName), 7), 1, 3)

 Val – This function takes a string with digits and converts it to a numeric value. The
previous expression returned the string ‘003’. This needs to be converted to a
number, so you will use: Val (Mid (Right (Trim (F.RequestFileName), 7), 1, 3), ‘5’)
Note that you will see 3 and not 003, this is the expected behavior.

11. Add the following commands to the Flow Data step:

Action Type Name Data
Type

Update Expression

Update Flow F.RequestNum Numeric Val (Mid (Right (Trim
(F.RequestFileName), 7), 1, 3), ‘5’)

Update Context C.All_Items_Exist Logical ‘TRUE’log

Item Validity Check 113

Operational Data Storage
Operational data storage (ODS) is a type of database that is often used as an interim

area for a data warehouse.

Unlike a data warehouse, which contains static data, the contents of the ODS are

updated through the course of business operations.

ODS is designed to quickly perform relatively simple queries on small amounts of data

(such as finding the status of a customer order), rather than complex queries on large

amounts of data, typical of the data warehouse.

ODS is similar to a person’s short term memory in that it stores only very recent

information. In comparison, the data warehouse is more like long term memory in that

it stores relatively permanent information.

Magic xpi ODS System

The Magic xpi ODS system provides a way to save data that can be shared by flow

components or integration flows.

The ODS system manages a data table that maintains an entry for each item saved in

the ODS.

Each item saved in the ODS is identified by its flow sequence ID and UserKey. An

ODS data item can be Alpha, Numeric, Date, Time, Logical, or BLOB. The data saved

in the ODS system can be retrieved by other Magic xpi Servers.

The Magic xpi ODS system supports the store, retrieve, and save data-retrieval modes.

The ODS stores and retrieves data in the integration flow:

 If, during project development, you use the local flow storage (ODS Local), the
data is saved in the ODS database for a particular thread. The saved data can be
retrieved by steps in the same thread only. The data is cleared from the ODS
database when the particular thread is completed.

 If, during project development, you use the global storage (ODS Global), the data
is saved in the ODS database and can be retrieved from within any flow.

Item Validity Check 114

Creating a Dynamic ODS

You will use the Flow Data utility to create a dynamic ODS that will hold the Request

XML file. The request will be stored in the ODS system until it is retrieved. You will

retrieve data from the ODS in a later lesson. This can be added as a separate step or

as part of the previous step. Here you will add it as part of the Get Req number from

FileName step.

1. Double-click the Get Req number from FileName step, or right-click on it and

select Configuration from the context menu.

2. In the Flow Data Configuration dialog box, click Add.

3. Enter the following information for the command:

Action Type Dyn Name Data
Type

Update Expression

Insert ODS
Global

 'Request_' & Trim(
Str(F.RequestNum,'5'))

BLOB F.RequestXML

Selecting the Dynamic check box indicates that the name will be a
dynamic name, meaning that it will be evaluated as an expression.
In the example above, the name will be evaluated to Request_1.

Item Validity Check 115

When you run the flow and view the project in the Magic Monitor, you are able to see

the entries added to the ODS, as shown in the image below:

In the case above, the flow was executed twice with the same request number. Each

time the flow was run, an entry was added to the ODS. Magic xpi automatically

provided an incrementing index in order to differentiate between the instances. At a

later stage, the challenge will be how to retrieve the index you are looking for.

If a BLOB has been added, you can view its contents by clicking the BLOB icon.

Item Validity Check 116

Check Item Flow
At this stage, you have stored the request data in a dynamic ODS. You now need to

check the availability of each item in the request in the local database. If there are

three items in the request, you need to perform this action three times.

To solve this problem, you will create a flow that checks each item's availability in the

database. The flow will check the stock availability of one item and later, you will call

this flow for each of the request's items.

1. In the Solution Explorer, right-click on Business Process-1 and select Add Flow.

2. Right-click on the new flow and select Rename

from the context menu.

3. Change the flow name to Check Item.

First, you need to add flow variables that will be used in the flow:

4. Under the Check Item flow, double-click on Flow Variables.

5. In the Flow Variables repository, add the following variables to your project:

Name Description Type Length Default Value

F.ItemCode Alpha 30

F.RequestNum Numeric 5

F.Quantity Numeric 9.2

The flow variables defined in this flow will become parameters for the
flow when it is called by other flows.

Item Validity Check 117

Checking whether the item exists in the database involves using functionality that you

already learned about.

6. In the Check Item flow, add a Data Mapper utility.

7. In the Step Name field, type Report Items Existence.

8. In the Description field, type: This step checks if the quantity in stock is more

than the quantity requested.

9. Double-click the Report Items Existence step, or right-click on it and select

Configuration from the context menu.

In the Data Mapper window:

10. From the Toolbox’s Mapper Schemas section, drag a Database source into the

Source Tree area.

11. Right-click on the Database source and select Show Properties.

12. Enter CheckItem in the Name property.

13. Use the Database wizard or the SQL option to:

a. Select the Products table.

b. Select the StockQuantity column.

c. In the WHERE clause, define: [Products].ProductCode='<?F.ItemCode?>'

14. Click Finish.

15. From the Toolbox’s Mapper Schemas section, drag a Variable destination into

the Data Mapper window’s Destination Tree area.

16. Right-click on the Variable destination and select Show Properties.

17. Enter Update_General_Check_Var in the Name property.

18. In the Variables field, select the C.All_Items_Exist context variable.

Item Validity Check 118

19. Expand the source and the destination.

20. Connect StockQuantity to C.All_Items_Exist.

The C.All_Items_Exist variable will updated if there is enough of the item in stock.

However, if a previous iteration found that there were not enough items in stock, this

variable need not be updated. To do this:

21. In the Data Mapper, park on the C.All_Items_Exist node and select

Show Properties from the context menu.

22. Park on the Calculated value property and open the Expression Editor.

You need to use the value returned from the database SELECT statement to update the

check by the C.All_Items_Exist value.

23. In the Expression Editor, click . This will insert the

Src.S1/Record/StockQuantity source node into the Expression Editor.

24. Enter the expression:

Src.S1/Record/StockQuantity >= F.Quantity AND C.All_Items_Exist

?
Here is something for you to think about. What will happen if the user
requests an item that does not exist?
This will be part of your exercise at the end of this lesson.

Item Validity Check 119

Calling the Check Item Flow for Each Item
The request may contain one or more items. To check each item's availability, you

need to call the Check Item flow for each item. The Magic xpi Data Mapper enables

you to call a flow for each occurrence of a multi-occurrence element. Of course, if

there is only one item, the flow will only be called once.

You will now add a Data Mapper step with a Call Flow destination to the Check Item

flow. By using the Call Flow, the Data Mapper will invoke the Check Item flow for each

item in the order.

1. Park on the Scan for New Requests flow.

2. Add a Data Mapper utility as a child step of the Get Req number from

FileName step.

3. In the Step Name field, type Check Items.

4. In the Description field, type: For each item from the request, call the "Check

Item" flow.

5. Double-click the Check Items step, or right-click on it and select Configuration

from the context menu.

In the Data Mapper window:

6. From the Toolbox’s Mapper Schemas section, drag an XML source into the

Source Tree area.

7. Right-click on the XML source and select Show Properties.

8. Enter Items_from_Request in the Name property.

9. In the XSD File field, type: course_data\schemas\request.xsd

10. Set the Source Type field to Variable.

11. Open the Variables List and select the F.RequestXML variable.

To add a Call Flow as a new destination:

12. From the Toolbox’s Mapper Schemas section, drag a Call Flow destination into

the Data Mapper window’s Destination Tree area.

13. Right-click on the Call Flow destination and select Show Properties.

14. Enter CheckEachItem in the Name property.

15. In the Flow Name property, open the Flow List and select the Check Item flow.

Item Validity Check 120

Calling a flow for each occurrence of a multi-occurrence element is done by

connecting the compounds of the source and destination schemas.

16. Expand the source and the destination.

In the Destination Tree area, you will see that all the flow variables defined in the

destination flow are used here as parameters of that flow.

17. Connect the item compound node in the Source Tree area to the Check Item

node in the Destination Tree area. By doing this you are ensuring that for each

item found, you will be invoking the Call Flow operation.

18. Open the Item node and connect the following nodes:

 partNum to F.ItemCode
 quantity to F.Quantity

19. Park on the F.RequestNum node in the Destination Tree area.

20. In the Properties pane, park on the Calculated Value property and type

F.RequestNum. Although it seems that you are updating the F.RequestNum

variable with itself, this is not the case. The F.RequestNum displayed in the

Destination Tree area is the name of the flow variable in the called flow,

Check Item.

Item Validity Check 121

Exercise
You will now practice what you learned.

1. The called flow Check Item checks whether there is enough stock to supply the

required amount. However, two problems arise that you need to handle:

 The part number in the request may be non-existent. In other words, it
does not exist in the database.

 The catalog price is more than the requested price. In other words, the
client wants to purchase the item at a price less than the list price.

2. The request and the items need to be inserted into the local MSSQL databases.

This must be executed for each request regardless of whether or not there is a

problem with the request.

 The request header details must be inserted into the Requests table.
Remember to update the Requests.CustomerExists field.
Hint: The customer does not exist if the F.CustomerName variable is
blank.

 The request lines must be inserted into the RequestItems table. Remember
to update the RequestItems.Status field. If the current request line is valid,
update this with 'TRUE'Log, but if there is a problem update this with
'FALSE'Log.
Hint: Do this in the Check Item flow.

3. Create an initialization flow (Auto Start) that deletes all the records from the

Requests database and Items table.

Summary
In this lesson, you learned how to:

 Use the Flow Data utility.
 Add an entry to the ODS.
 Call a flow from within the Data Mapper.

In the exercise, you used the Data Mapper to insert and delete entries from the

database.

Item Validity Check 122

Services 123

Services
Magic xpi services are a way that Magic xpi provides to enable other applications to

invoke Magic xpi externally. These external applications invoke Magic xpi via the

Magic xpi service, which then triggers the invocation of a flow.

You learned about resources and the Resources section of the Settings dialog box in

Magic xpi. In a similar way, Magic xpi maintains a central repository defining the

external methods that other applications can use to interface with Magic xpi. As with

the Resources section, the Services section is also found in the Settings dialog box. The

Settings dialog box can also be opened from the Start menu in stand-alone mode.

This lesson contains various topics, including:

 The Services section of the Settings dialog box
 Service types
 Defining a new service

Lesson 11

Services 124

Services Section
The main purposes of a centralized Services section are:

 Reusability – A service can be used more than once throughout the project. For
example, an external queue manager such as MSMQ can be used in several
places. Instead of defining and maintaining the definitions for each instance
separately, you can define it once.

 Flexibility – The services are defined in a separate file and can be configured
outside the project. When migrating the project between different operating
environments, no changes are required to the project.

 Ease of maintenance – All services are defined in one central location. You do not
need to look throughout the project to locate where services are being used.

The Services section provides a list of all services that the project provides to external

sources. It is good practice to add a brief description to make the list more meaningful.

The Services section is accessed by clicking the Project

menu and selecting Settings.

The Services section is similar to the Resources section,

and is divided into two sections:

 Service definitions (left pane)
 The specific configuration for that service (right pane)

A service often connects to an external resource. Therefore in many
cases you will need to define a resource before the service.

Services 125

To add a new service:

1. Click Add.

The New Service dialog box opens.

2. The Service Type dropdown list contains

a list of all the predefined service types.

Magic xpi has a predefined a list of service types. For each service type there is a list

of configurable properties.

These definitions are per Magic xpi installation and affect all projects.

The definitions are maintained in an XML file, service_types.xml, located in the

Magic xpi installation folder.

It is not recommended to make changes to this file.

3. Select HTTP from the dropdown list.

4. You are prompted to enter the Service name. Enter RequestConfirmation. This is

the name that will be used throughout the project. It is advisable to provide a

meaningful name so that it will be easy for you to identify the service.

Once the service has been added, you need to configure it. The configurable settings

for each service type are different.

As an example, you will continue with the HTTP service that you have added. When

you park on the service, you will see the list of properties for that service. As has been

discussed, a service is an external resource and is often first defined in the Resources

section of the Settings dialog box. You will use this service in the next lesson, when

you define an HTTP trigger.

Services 126

For HTTP, there are two parameters:

 Web Server – This is the name of the website where the Magic xpi requester
resides. The default value is %MachineName%. This is a predefined environment
variable, and its default value is the name of the local machine.

 Alias – The website's alias name. The default is %Alias%, this is a predefined
environment variable. Its default value is Magicxpi4.5. You will leave the default
values unchanged.

There is no limit to the number of configurations that can be created for a single

service type.

Services 127

HTTP Endpoints
When using the HTTP service, an external HTML form calls Magic xpi and activates a

flow. This form of invoking a flow is called a trigger, and will be discussed in detail in

the next lesson.

When calling such a trigger, the calling HTML form may submit additional information

required by Magic xpi to service the request. This additional information has to be

predefined in Magic xpi. Each such predefined set of passed values, their names and

types is called an endpoint.

The Trigger Activation

The trigger is activated when an HTTP request is received.

To activate the trigger and consequently invoke the flow, the URL must be defined in

the following way:

http://<ComputerName>/<Magic xpi instance>/MgWebRequester.dll?appname=IFS

ProjectName&prgname=HTTP&arguments=-AService Name%23Endpoint

name&Argument_Name = Argument_Value

Where:

 ComputerName is the name of the local computer where Magic xpi resides.
 Magic xpi instance is the Magic xpi alias. This will be Magicxpi4.5 in the current

version.
 /MgWebRequester.dll?appname=IFS is constant and must be part of the address.
 ProjectName is the name of the current project.
 &prgname=HTTP&arguments=-A is constant and must be part of the address.
 Service Name is the name of the HTTP service in the Services section.
 Endpoint name is the name you gave to the endpoint.
 Argument Name=value is the name of an argument passed to the trigger with its

corresponding value.

Services 128

For example, the following is a legal address:

http://localhost/Magicxpi4.5/MgWebRequester.dll?appname=IFSMagic_xpi_course

&prgname=HTTP&arguments=-ARequestConfirmation%23check_request_status&

RequestNum=5

You can also send a request to the Server by using a form and hidden input tags for

the arguments. You can generate a sample form by selecting the

Generate Sample HTML checkbox in the Endpoint dialog box. You will use it in the

exercise at the end of this lesson.

The generated sample HTML file will be created in the following directory:

%currentprojectdir%Service\<Service Name>, where Service Name is the name of the

service, in this case, RequestConfirmation. You can define your own path.

Services 129

Exercise
1. Create an endpoint called check_request_status.

2. Create an HTML page to invoke the service by using the

Generate Sample HTML option.

3. Pass the request number in a variable called RequestNum.

Summary
In this lesson, you learned about:

 Magic xpi services.
 How to maintain services using the Settings dialog box’s Services section.
 How to create new services.
 The HTTP service and how to add an endpoint.

Services 130

Checking Request Status 131

Checking Request Status
Sometimes, in an integration scenario, human intervention is required. The transaction is held

in persistent memory, such as a database, until reviewed by a person.

In this lesson, you will learn how to invoke a flow by using an external triggering mechanism

and will see an example of this from an Internet browser. You will learn how to create a

dynamic HTML file which you will return to the calling Internet browser. While doing this, you

will learn a method of implementing a scenario of human intervention.

This lesson contains various topics, including:

 Magic xpi triggers.
 Defining an HTTP trigger.
 Creating an HTML response using HTML merge.

Lesson 12

Checking Request Status 132

Intervention Process
A simple human intervention process includes pausing at a certain point. When there is a

human response, the process proceeds from the point that it was stopped at, restoring the

relevant information at the paused point.

In previous lessons, you learned how to log incoming requests into the database and into the

ODS. You also learned how to check if the customer exists in the MSSQL database, and how

to check the availability of the items.

If the customer did not exist or not all of the items were in stock, the request was considered to

be unapproved.

For unapproved requests, human intervention is needed to approve them. Therefore, in this

lesson you will learn how to develop a process for human intervention.

When there is a response from the user, the process is continued from the point it was

stopped, the process information is loaded, and the process continues according to the user's

response.

Checking Request Status 133

Magic xpi Triggers
A flow in Magic xpi can start in many different ways. For example, a flow can be:

 Set to start automatically when Magic xpi starts.
 Called from another flow.
 Subscribed to a publication. (This will be discussed in a later lesson.)
 Started on a time schedule. (This will be discussed in a later lesson.)
 Triggered by an event.

The Flow Editor provides a special section to define flow triggers. When you include

components in the Triggers area section of the Flow Editor, these components serve to activate

the flow when the trigger component receives the appropriate information.

Checking Request Status 134

Trigger Types
The Flow Editor's main pane is divided into two areas where you can place components. You

can add components in the Flow area, or you can add components in the Triggers area.

When you include components in the Triggers area, these components activate the flow when

the trigger component receives the appropriate information.

For example, you can place an HTTP component in the Triggers area. When the HTTP request

is received, the HTTP trigger is activated and invokes the rest of the flow that it is placed in.

Some of the components that you can use as triggers are:

 Directory Scanner  Email  HTTP
 JMS  MSMQ  Salesforce
 SAPB1  Web Services  WebSphere MQ

Another flow trigger is provided by the Scheduler utility, which will be discussed in a later

lesson.

You can include up to ten trigger components in your flow.

Checking Request Status 135

HTTP Triggers
Before you can add the HTTP component, there is some preparation work you need to do.

You will create a flow that will respond to a user's request for the request status. The response

will be a generated HTML page containing the requested data.

The HTML file will contain the customer details, and whether the items are in stock. If the

customer does not exist, the customer’s name will be contained in the HTML as a hyperlink,

requesting the addition of the customer’s name to the database. Processing that part of the

request will be discussed in a later lesson.

1. In the Solution Explorer, right-click on Business Process-1 and select Add Flow. Name

the flow: Check Request Status

If you want this flow to be above the Initialization flow, you can park
on the flow and select Move Flow Up from the context menu.

Next, you will set four flow variables that will be used in the flow, and one environment

variable that points to the templates folder location.

Under the Check Request Status flow:

2. Double-click Flow Variables to open the Flow Variables repository.

3. Add the following flow variables:

 F.HTTP_Request_Num – Numeric of size 5.
 F.CustomerId – Numeric of size 12.
 F.CustomerExists – Logical.
 F.RequestExists – Logical. Give this a default value of 'FALSE'LOG.
 F.RequestHeader – Alpha of size 255.
 F.Result_HTML – BLOB.

4. From the Project menu, select Settings.

5. Under the General Environment section, click User Environment Variables. Click Add

to add an entry named templates with a value of

%currentprojectdir%course_data\templates%sl%.

Checking Request Status 136

The HTTP Component

The HTTP component retrieves information from a specified URL.

The component can work in two modes:

 Step mode – The component can:

 Work in Get, Post, and Rest modes.
 Retrieve information according to search criteria.
 Employ multiple search strings, such as Start and End texts.

 Trigger mode – The HTTP component is configured to define the properties that enable you
to use the HTTP requester.

As a trigger component, the HTTP component is used to trigger a flow. It also enables the

passing of parameters through the Web.

The flow is triggered when the trigger component receives a request from the Web. The

request is sent in a specific syntax, and includes the arguments and parameters that are to be

updated.

To add the HTTP trigger to the flow:

1. In the Solution Explorer, park on the Check Request Status flow.

2. Drag the HTTP component from the Toolbox pane to the Triggers area.

Right-click on the HTTP trigger to open its Properties pane.

3. In the Trigger Name field, type Receive HTTP Calls.

4. In the Setting section, select the RequestConfirmation service.

5. Double-click the HTTP trigger, or right-click on it and select Configuration from the

context menu.

The Component Configuration dialog box opens. The dialog box has two sections, the Service

Details and the Argument Details.

Checking Request Status 137

In the Service Details section, you select the endpoint. The argument list will change according

to the selected endpoint.

 The arguments will be mapped to an internal Magic xpi variable by selecting the Variable
Selection box in the Mapping Variable column.

 These are the parameters that are sent from the external Internet browser to Magic xpi,
and will then be used within the flow. Each mandatory argument has to be mapped to a
variable.

 The Return Value is a BLOB variable that will be passed back to the Internet browser for
display. This is in the form of a valid HTML script.

 The Validation Expression defines limits to the trigger. You can open the Expression Editor
to create an expression. In this way, you can create conditions for triggering the flow by
creating a validation expression.

When you click the variable selection buttons, you will not see any of the variables that you

used in the Scan for New Requests flow. This is because you defined these variables as flow

variables, and flow variables are localized to the specific flow in which they were defined.

6. In the Endpoint Name property, select check_request_status.

In the Argument Details section:

7. Park on the Mapping Variable column and click the button. Select

F.HTTP_Request_Num from the selection list.

8. Park on the Return Value variable and select the F.Result_HTML variable.

9. Click OK to close the dialog box.

Checking Request Status 138

HTML Response Page
You are going to build the header string for the response page, specifying the customer's

details. To accomplish this, you will extract the data from the database using the Data Mapper

utility.

1. Park on the Check Request Status flow.

2. Add a Data Mapper utility as the first step in the flow, and name it Get Information

from DB.

3. In the Description field you can type: This step generates the header of the request for

the returned HTML. It also checks whether the request is a problematic one.

4. Double-click the step, or right-click on it and select Configuration from the context

menu.

The Data Mapper window opens.

5. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source

Tree area.

6. Right-click on the Database source and select Show Properties.

7. Enter Scan_Requests in the Name property.

8. In the Database Definition field, select the Course Database entry.

9. Click Wizard:

a. Note that the DB Operation property is set to Select by default. This is the only

option for sources.

b. Select the Requests table.

c. Select the CustomerID, and CustomerExists columns.

d. You need to select only the request entry that the user requested when they

passed the Request ID. So, the WHERE clause will be:

[Requests].RequestId = <?F.HTTP_Request_Num?>

Checking Request Status 139

If the customer exists, you are going to add the customer details to the returned HTML. But, if

the customer does not exist, you want to have a hyperlink where the user can click the

hyperlink and therefore add the customer.

To do this:

10. From the Toolbox’s Mapper Schemas section, drag a Variable destination into the

Destination Tree area.

11. Right-click on the Variable destination and select Show Properties.

12. Enter Create_HTML_Header in the Name property.

13. Select the F.RequestExists, F.CustomerExists, F.CustomerId and F.RequestHeader flow

variables.

14. Expand the source and destination.

15. Map CustomerId to F.CustomerId and to F.RequestHeader.

16. Map CustomerExists to F.CustomerExists and to F.RequestHeader.

17. When the Data Mapper executes, it will fetch only those records where

[Requests].RequestId = <?F.HTTP_Request_Num?>. Therefore, set the F.RequestExists

variable’s Calculated Value field to 'TRUE'LOG.

You can now deal with the F.RequestHeader:

18. Right-click on the F.RequestHeader entry in the destination pane, select

Show Properties, and enter the following expression in the Properties pane’s
Calculated Value field:

IF (Src.S1/Record/CustomerExists, '', '<a

href="http://localhost/Magicxpi4.5/MgWebRequester.dll?appname=

IFSmagic_xpi_course&prgname=HTTP&arguments=-

ARequestConfirmation%23add_customer&RequestNum=' & Trim (Str(

F.HTTP_Request_Num,'5')) & ' "> ' & Trim (Str (Src.S1/Record/CustomerID, '9')) &

'')

The Calculated Value checks whether the customer exists, and then adds a hyperlink under the

Customer ID, if the customer does not exist.

The expression above seems complex, so a little explanation is necessary. To add a hyperlink

under the CustomerID value, you need to use an HTML tag called an anchor. This has a syntax

of text. The double quotation marks, ", are important here. In the

example above, the link will be '<a

href="http://localhost/Magicxpi4.5/MgWebRequester.dll?appname=IFSmagic_xpi_course&

prgname=HTTP&arguments=-ARequestConfirmation%23add_customer&RequestNum=' & Trim

(Str(F.HTTP_Request_Num,'5')) & ' ">'.

You are using the HTTP service named RequestConfirmation. You can see the addition of the

add_customer endpoint to the hyperlink.

Checking Request Status 140

You have checked the request information, and you fetched the customer identification from

the database. Now you need to fetch the customer information.

1. Add a Data Mapper utility as child step of Get Information from DB. Name it Get

Customer Information.

2. Double-click the step, or right-click on it and select Configuration from the context

menu.

The Data Mapper window opens.

3. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source

Tree area.

4. Right-click on the Database source and select Show Properties.

5. Enter Fetch_customer in the Name property.

6. Click Wizard:

 Select the Customers table.
 Select the CustomerName column.
 You need to select a certain customer. You fetched the ID in the previous step.

The WHERE clause will be:
[Customers].CustomerID=<?F.CustomerId?>

If the CustomerId does not exist, this Data Mapper step will not fetch any details.

7. From the Toolbox’s Mapper Schemas section, drag a Variable destination into the

Destination Tree area.

8. Right-click on the Variable destination and select Show Properties.

9. Enter Create_HTML_Header in the Name property.

10. Select the F.RequestHeader flow variable.

11. Expand the source and destination.

When the Data Mapper executes, it will fetch only those records where

[Customers].CustomerID=<?F.CustomerId?>.

12. Connect the CustomerName to F.RequestHeader.

13. Right-click on the F.RequestHeader entry in the destination pane, select Show

Properties, and enter the following expression in the Calculated Value field:

IF (F.CustomerExists, Src.S1/Record/CustomerName , F.RequestHeader)

This is an important expression. If the customer is found in the database, you will

update the HTML with the name fetched from the database. But if the customer does

not exist, you will use the information that you updated in the previous step.

Checking Request Status 141

Templates
In the previous section, you updated a variable named F.RequestHeader. The response to the

request is returned in a variable named F.Result_HTML. You need to update the F.Result_HTML

variable with the request information. This will be pure HTML data. You will do this by using a

pre-defined template.

In the My Documents\Magic\projects\Magic_xpi_course\Magic_xpi_course\course_data

folder, you will find the templates directory, which includes a template of an HTML file:

RequestStatus.tpl.

A template is a file with special tags that function as place holders. Magic xpi recognizes

these tags, and enables you to map data into them using the Data Mapper. The result is based

on the content of the template, with all the place holders being replaced with actual data. The

process is similar to the mail merge feature found in most word processors.

The Magic xpi destination for a template file is: Template.

Merge tags have the following generic form:

{Token Prefix}{Token_name}{Token Suffix}.

In Magic xpi, the Token Prefix and Suffix are defined as <!$ and > respectively.

 <!$MG_name> – The name part of the tag is represented as a node in the destination
schema in the Data Mapper utility.

 <!$MGREPEAT> – Defines the beginning of a repeated area that is represented in the
Data Mapper utility as a compound. The repeated area is duplicated and processed for
each iteration of the connected compound, thereby allowing for an unknown number of
data rows.

 <!$MGENDREPEAT> – Defines the end of a repeated area and is not represented in the
Data Mapper utility.

You can also define a section of the file that will be displayed in the final output according to

a logical expression.

 <!$MGIF_name> – Defines the start of an IF block. This is logical data. If the data is True,
the rest of the IF block is processed. You can have nested IF blocks. The MGIF simply
defines the start of a block, and the tag itself will not appear in the output.

 <!$MGENDIF> – Defines the end of an IF block. If there is an IF block, this is mandatory.
 <!$MGELSE> – Defines the start of an ELSE block and the end of an IF block, which must

precede the ELSE block. The ELSE block is processed if the name data value of the IF block
evaluates to False. This tag is optional. The tag itself is removed from the output.

You will define the template in the lesson exercise.

Checking Request Status 142

A Merge Template file will look similar to the image below. Merge Tags are outlined in red:

Checking Request Status 143

Exercise
1. Complete the creation of the HTML Response page by defining a Template destination.

2. Map the F.RequestHeader and request items to the template.

3. Transfer a static HTML response page in case the request was not found.

a. Use the File Management component to accomplish this.

b. Define a new environment variable named Files, which points to:

%currentprojectdir%course_data\Files%sl%

In this directory you will see a file named RequestNotFound.htm.

This is the file that must be returned if a request was not found in the database.

4. Test your project using the HTML page that you created in a previous lesson. You can

find the HTML file in the directory: %currentprojectdir%Service\RequestConfirmation.

Summary
In this lesson, you learned about:

 Magic xpi triggers.
 Implementing a human response situation.
 Templates.

Checking Request Status 144

Error Handling 145

Error Handling
An integration application, in most cases, has no control over the source systems and

input formats, and the availability of consumer systems. Errors can occur in many

different areas of the process.

The integration project needs to be able to detect and identify potential errors as soon

as they occur, report those errors, and continue to work and stay stable.

The monitoring, processing, and handling of error situations are an integral part of any

project.

Magic xpi’s error management includes:

 Context error variables
 Error behavior in flows and steps
 Dedicated error flows

Lesson 13

Error Handling 146

Magic xpi Error Handling
Magic xpi error handling is performed on:

 Step error behavior
 The flow level
 The error flow level

Context Error Variables

You learned that there are some context variables that are used for error handling. The

predefined context variables return error information that you can use to determine the

course of action.

The values in the following variables can only be used in the condition following the

step that raised the error. They are cleared before entering the next step:

 C.sys.ErrorCode – The error code.
 C.sys.ErrorDescription – The error description.

The following variables assist you in identifying the origin of the error:

 C.sys.LastErrorFlowName – The name of the flow where the last error occurred.
 C.sys.ErrorStepName – The name of the step that invoked the last error.

Finally, the following variables hold information about the last error. They are only

updated when a new error occurs:

 C.sys.LastErrorCode – The last error code. This remains until there is a new error.
 C.sys.LastErrorDescription – The last error description. This remains until there is a

new error.
 C.sys.LastErrorInfo – Contains full information about the error. It is a BLOB and can

contain an SQL statement, a Java error, and others.

Error Handling 147

Step Error Handling
The Magic xpi step error behavior is Exit (except for Data Mapper and SAP B1 steps

where you can set the error behavior in the Error Behavior property to Exit or

Continue). When an error occurs in the step, the step exits. If there is more than one

method in the step, the step will end immediately when an error occurs and will not

continue to the next method.

The simplest way of checking for an error is by checking the error code contained in

the error variables. You check the value in C.sys.ErrorCode before entering the next

step.

Follow these steps to see how this works:

1. Park on the Scan for New Requests flow. Add an Email component as a child

step of the Extract Details from Request step.

2. Name the step: Send Thank You Email

3. Set the Processing Mode to Parallel.

4. Select the Method interface.

5. Double-click the step, or right-click on it and select Configuration from the

context menu.

6. Click Add. Select Quick Send and set the following:

a. To: F.CustomerEmail

b. Subject: 'We received your request.'

c. Body: 'Thank you for your request. We are currently checking into

it.'&ASCIIChr (10)&'MSU Computers'

ASCIIChr (10) enables you to add a line break in the text.

Now what happens if the customer sent an invalid email address?

7. Add an Email component as a child step of the Send Thank You Email step.

Name the step: Send Error Email.

8. Select the Method interface.

9. Double-click the step, or right-click on it and select Configuration from the

context menu.

10. Click Add. Select Quick Send and set the following:

a. To: postmaster@magic.xpi.course.com

b. Subject: 'Email to the customer was returned.'

c. Body: 'This is an automatic notification. Please do not reply.'&ASCIIChr

(10)&'An email to a customer failed.'

Error Handling 148

11. Set the condition for this step as: C.sys.ErrorCode =102

When you run this flow with an invalid email address, you will get an error that is

handled by this flow.

Flow Level Error Handling
With step error handling, you can test for a certain error and then decide whether to

continue to the next branch. This can be useful, but you might find that you need to use

the same condition often. As an example, if a particular step had three parallel child

steps, you would need to use the condition three times. Of course, in this case, you

could use the NOP service.

In flow level error handling, Magic xpi enables you to define automatic behavior for

certain errors. You can define an error policy for a range of error codes in the

Errors Policies repository. This repository is accessed by double-clicking Error Policies

under the relevant flow.

When an error occurs that falls in that range, the predefined error policy will be

invoked.

You can decide between Abort, Ignore, Restart Flow, Retry, and Jump.

Jump enables you to go to a section of the flow that is not normally
accessible. You may have a branch in the flow where the condition is
false and can only be reached by using Jump.

When you use the Jump method, the flow continues from that step and does not

continue with the step that raised the error.

Component Type

Each component has an internal component ID and a component type. You can see

these values in each component’s Properties pane.

It is possible to have the same error codes in different components. A specific error

code depends on the component type.

The C.sys.LastErrorComponentType variable contains the component ID of the last

component that returns an error.

Error Handling 149

Follow these steps to see how this works:

1. Park on the Scan for New Requests flow.

2. Park on the Send Error Email step and select Copy from the context menu.

3. Park on the Scan Directory step (the first step in the flow) and select Paste. The

step is now moved as a new child of the Scan Directory step.

4. Delete the old Send Error Email step.

In the last example we added a condition for this step as: C.sys.ErrorCode =102.

5. Replace the C.sys.ErrorCode =102 condition with 'FALSE'Log.

By conditioning this step with FALSE, you are ensuring that this step or branch is

unreachable. It is, in a sense, disabled.

6. Under the Scan for New Requests flow, double-click Error Policies.

7. in the Error Policies repository, click Add.

8. Click the zoom button in the From column. This loads the Errors Repository

dialog box, where you can select an error for a specific component.

9. From the dropdown list, select Email. Only the error types for the Email

component will now be displayed.

10. Select 102 Send Mail Error.

11. Repeat step 8 for the To property.

12. In the Error Policy column, select Jump.

13. Click the zoom button in the Step column. You see only the steps in the current

flow. Select the Send Error Email step.

This step will not be executed in the normal sequence because the condition is False.

However, with the error policy that you defined, you will be able to jump to the step

and carry out a sequence of steps.

You can test this in the same way that you did the previous example.

Error Handling 150

Dedicated Error Flow
You can define a dedicated flow that will handle the error. This can be any Magic xpi

flow. An error flow provides a high level of error handling in which you can define

your own mechanism for handling the error.

 You first define a flow that will be used as an error flow.
 Then you select the flow that will be using the error flow.

You select a dedicated error flow in the External section of the Properties pane of the

flow which needs the services of an error flow. When you assign a specific flow to

handle error codes, the icon will appear to the left of the Trigger area.

In the error flow, C.sys.LastErrorCode, C.sys.LastErrorDescription, and
C.sys.LastErrorInfo hold the values of the last error.

To see an example of this mechanism:

1. Create a flow named: Errors

2. Drag the Email component as the first step in the flow. Rename the step to:

Send Email to Administrator

3. Double-click the step, or right-click on it and select Configuration from the

context menu. To send an email, you need to configure the component using

the Method interface. Use the Quick Send method and set the following:

a. To: postmaster@magic.xpi.course.com

b. Subject: 'Email to the customer was returned'

c. Body: 'This is an automatic notification. Please do not reply.'&ASCIIChr

(10)&'An email to a customer failed.'

Error Handling 151

Since the flow will be invoked each time an error is raised, you need to condition the

step according to the error that you want to handle.

4. Set a condition for the Send Email to Administrator step, and set the condition

with the following expression: C.sys.LastErrorCode =102.

Once the error flow ends, the focus returns to the flow that raised the error. It then

continues with the following step, the one after the step where the error occurred. The

error flow returns clears the error.

When using the Data Mapper or a component that supports multi-
operations, each record can invoke the error flow. When the error
flow is completed, the process will either move to the next record or
leave the step, depending on the step error behavior, which can be
Continue or Exit.

The error flow example provided in this lesson displays the handling
of a single error. However, you can create a general error flow that
will handle different types of errors.

Returning the Flow with an Error

Although the flow handled the error, and in essence cleared the error, you may need

to return a different error, or even the same error, to the flow that raised the error.

You can decide whether to end without an error (the default), return the same error to

the calling flow, or raise a different error.

To raise a different error:

1. Add a Flow Data utility as the last step of the error flow.

2. Update the C.sys.ErrorCode variable with 102. This code must be a code that

is compliant with the list of errors for the specific component. The Email

component has the following error codes: 100, 101, 102, and103.

If you need to return the same error code as the one that raised the error, you can

update C.sys.ErrorCode with the value fetched from C.sys.LastErrorCode.

3. When control is returned to the main flow, an error will be raised and handled

by the flow error mechanism.

Defining whether the error flow returns with an error or not depends
on your own project requirements.

Error Handling 152

Exercise
In the previous lesson, you used the File Management component to copy a static

HTML file to the BLOB to be returned to the requester. This static file was located in the

Files folder, and you defined an environment variable that points to that folder.

What happens if that file or folder does not exist?

 If the file or folder does not exist, return an error to the Internet browser.

 In the templates folder there is a template named Error.tpl. Return this
template to the Internet browser.

This is a very specific case and not a general error. Consider
establishing an error policy.

Summary
Magic xpi handles flow errors in the following sequence:

1. Magic xpi calls an error flow if it has been defined.

2. Magic xpi handles the error based on the flow error policy, if the error flow

returned with an error.

3. Further steps in the flow logic can be conditioned according to the value

returned from the C.sys.ErrorCode variable.

Adding a Customer 153

Adding a Customer
Web services are described in a special XML file called a WSDL (Web Service

Description Language). The WSDL document describes the service, which contains a

list of operations including the structure of the input and output.

A Web service can be a commercial Web service or one that is freely distributed.

Magic xpi enables you to use Web services as a consumer and to offer Web services

as a provider. Magic xpi's Web service functionality is based on a third party

program called Systinet Server for Java (SSJ). This is also referred to as Systinet in this

lesson.

In this lesson, you will add a flow that handles the “add customer” scenario.

This lesson includes various topics, such as:

 An introduction to Web services.
 The Web service trigger.
 Retrieving information from the ODS.
 The merge HTML response.

Lesson 14

Adding a Customer 154

Systinet
Systinet offers strong support for all industry standards, including SOAP 1.1,

SOAP 1.2, WSDL 1.1, JAX-RPC, JAXM, SAAJ, JWSDL, WS-Security, WS-Reliable

Messaging, and WS-Addressing.

It can handle multiple security mechanisms, including Web Services Security (WS-S). Its

authentication support includes HTTP Basic, HTTP Digest, and Secure Socket Layer

(SSL).

The authorization model relies on JAAS, which provides maximum integration with

existing security frameworks. XML-level security is supported with XML signature, XML

encryption, and the Security Assertions Markup Language (SAML).

The Magic xpi installation process also installs a copy of this software. If the

installation and configuration of Systinet was successful, Magic xpi will manage all the

communication with this software for you.

Systinet creates the following shortcuts in the operating system’s Start menu:

 The Start shortcut executes the Systinet server.
 The Stop shortcut halts the Systinet server.
 The Systinet Enablement Server Administration Console shortcut brings up the

administration program for the Systinet program.

You need to start the Systinet server before using it. You can start the server in one of

the following ways:

 The Start menu entry
 As a Windows service
 By running: %WASP_HOME%\bin\serverstart.bat

Once the server has loaded, you can start the console by doing one of the following:

 Accessing the operating system's Start > All Programs > Systinet Server for Java
menu, and selecting the Systinet Enablement Server Administration Console
program entry.

 Entering the following in your browser: http://localhost:6060/admin/console

The initial user is admin and the password is changeit.

Adding a Customer 155

Providing a Web Service
Magic xpi enables two modes when working with Web services:

 Web Services Client – Provides the option to use a published Web service. This is
also referred to as consuming a Web service. You will see this in a later lesson.

 Web Services Provider – Provides the option to publish Magic xpi as a Web
service, so that other applications can invoke Magic xpi and thereby trigger a
flow.

Once you set up Magic xpi as a Web service provider, it will be able to receive

requests from any external system, process its request, and provide an answer.

The Systinet Server is the management server where all Magic xpi Web services are

deployed. Since this server is external to Magic xpi, the first step is to create a

resource containing the connection details to the Systinet

server:

1. Create a new Web Services Server resource type,

named AddCustomer.

The resource settings for the Web Services Server resource displays information from

your Systinet installation. You can leave the default settings as is.

Adding a Customer 156

The objective of exposing Magic xpi as a Web Service provider or server is to provide

external systems with the ability to request information from a Magic xpi project. You

therefore need to create a service.

2. Add a new service and select Web Services. You can give it the same name as

the resource, AddCustomer.

In the settings section:

3. In the Web Service Provider setting, select the AddCustomer resource that you

created.

4. In the Web Service Name setting, type: AddCustomerWS.

5. Click Operations to create the operations or processes that this Web service

provides. This is very similar to defining endpoints for the HTTP service.

The service name in the left pane is an internal Magic xpi name used to
identify this service in Magic xpi. The Web Service Name setting provided
in the settings pane is the name of the service that is deployed in external
systems, such as Systinet.

Adding a Customer 157

Operations

You can create as many operations as you want. All the operations will be part of the

same Web service that you are setting up and can be called by third party systems.

Each operation can have a single return value and multiple arguments.

To add an operation:

1. In the Operations dialog box, click Add to add an operation. Name the

operation Add_customer.

2. Create an argument, name it RequestID, and set the Direction to In. This must

be a Numeric variable of size 5 and an XSD Type of xsd:int. Remember that

Numeric is the internal Magic xpi data type and xsd:int is the data type that is

defined in the Web service.

3. Click OK to exit the Operations dialog box.

4. Click Management. This dialog box enables you to generate the specified

Web service inside the Systinet program.

5. Click Generate.

Adding a Customer 158

Web Service Trigger
You are required to respond to the user's manual request to add a customer. This

request is the result of the HTML page containing the hyperlink that you returned in a

previous lesson when the customer was not found. The response will be a generated

HTML confirmation page of successfully adding the customer.

1. Create a new flow named Add Customer. You can move the flow up so that it

appears before the Check Item flow. This is not a necessity, but by doing so

you group all the main flows together at the top of the business process. To

move a flow upwards, select Move Flow Up from the context menu.

2. Under the Add Customer flow, double-click Flow Variables to open the Flow

Variables repository.

3. Add the following variables:

 F.RequestNum – Numeric of size 5
 F.RequestXML – BLOB

When you move a Web Services component into the Triggers area, you are able to

define which Web Service operation will invoke this flow.

4. Drag the Web Services utility and drop it into the Triggers area of the Add

Customer flow. Name the trigger Add Customer by WS.

5. In the Setting section of the Properties pane, ensure that the AddCustomer

service was automatically selected.

6. Double-click the trigger, or right-click on it and select Configuration from the

context menu so that you can define the parameters. You will see that the

Service name, AddCustomerWS was automatically defined.

7. Select the Add_customer operation from the dropdown list.

8. You will get the list of arguments that you defined in the service. Park on the

RequestID parameter and then from the Mapping Variable column, click .

Select the F.RequestNum variable.

You have now finished creating a Web Service trigger.

Adding a Customer 159

Retrieving Information from the ODS
In a previous lesson, Item Validity Check, you added the request to the ODS for future

retrieval. When the current flow is invoked, you need to be able to fetch the request

information so that you can extract the necessary information.

In the Add Customer flow:

1. Add the Flow Data utility to the Flow area as the first step in the flow.

2. In the Name field, type Get request XML file from ODS.

3. Double-click the Flow Data utility, or right-click on it and select Configuration

from the context menu.

4. In the Flow Data Configuration dialog box, click Add and set the Action

column to Update.

5. Set the Type column to Flow.

6. In the Name column, select the F.RequestXML flow variable.

7. In the Encoding column, select the required encoding type for the variable.

8. In the Update Expression column, type:

ODSGet ('Request_' & Trim (Str (F.RequestNum , '5')) , 1 , 'B' , 1)

9. Click OK.

Adding a Customer 160

As of now, you received the request number as an argument from the Web service,

and retrieved the request XML file from the dynamic ODS using the request number.

The next stage is to add the information to the Customers table. The source data will be

the retrieved XML file currently stored in the RequestXML variable.

1. Drag a Data Mapper step as a child step of the Get Request XML file from

ODS step. Name the step Add Customer to DB.

2. Double-click the Data Mapper step, or right-click on it and select Configuration

from the context menu.

The Data Mapper window opens.

3. For the Source:

a. Drag an XML source into the Source Tree area.

b. Right-click on the XML source and select Show Properties.

c. Enter Get_Customer_Detail in the Name property.

d. In the XSD File field, type: course_data\schemas\request.xsd

e. Set the Source Type to Variable and select the F.RequestXML variable.

4. For the Destination:

a. Drag a Database destination into the Destination Tree area.

b. Right-click on the Database destination and select Show Properties.

c. Enter Add_To_Customers in the Name property.

d. Use the Database wizard and select the Insert operation. Then:

 Select the Customers table.
 Select all of the columns.

5. For the Destination:

a. Drag a Database destination into the Destination Tree area.

b. Right-click on the Database destination and select Show Properties.

c. Enter Add_To_Contacts in the Name property.

d. Use the Database wizard and select the Insert operation. Then:

 Select the Contacts table.
 Select all of the columns.

6. Expand the source and the destinations.

Adding a Customer 161

7. Connect the following nodes:

Source Destination Expression

Customer_ID Customers.CustomerID

Customer_Name Customers.CustomerName

country Customers.CustomerCountry

city Customers.CustomerCity

street Customers.CustomerAddress

zip Customers.CustomerZipCode

RequestTotal Customers.CustomerCredit

Customer_ID Contacts.CustomerID

ContactID Contacts.ContactID

ContactName Contacts.ContactName

Contact_eMail Contacts.ContactEmail

Note: You are using the same Data Mapper step to insert into two separate tables.

Adding a Customer 162

Testing the Web Service
To invoke the flow externally as a Web service, you will use the Systinet console.

But first, you need to run the project. Remember to:

 Save the project.
 Create an execution file.
 Invoke the Magic xpi Server from the Start menu.

You can now invoke the flow from the Systinet console.

1. Start the console by entering the following URL in the Internet browser:

http://localhost:6060/admin/console

2. Enter the user name (the default is admin).

3. Enter the password (the default is changeit).

Since you deployed the Web service automatically via Magic xpi, the Web service is

listed as deployed in the Systinet server.

Adding a Customer 163

To test the Web service, you need to scroll down the list until you reach the Invocation

Console section. Click the Invocation Console button.

You will now see the operation you defined,

Add_Customer ().The operation has a hyperlink.

1. Click on the hyperlink to enter data.

In this case, you need to enter a value in the RequestId field.

2. Enter a request number and click Perform call. The Magic xpi Add Customer

flow will be invoked.

Adding a Customer 164

Exercise
In a previous lesson, you learned how to accept a request from the Web using the

HTTP component. This process returned an HTML page that included a link for adding

a new customer if the customer did not exist in the database.

1. Add an HTTP Trigger to the Add Customer flow. This will receive the request

number and invoke the flow. Return a BLOB variable in the HTTP trigger. To do

this, add a BLOB flow variable named F.RequestHTML.

2. Return an HTML file to the HTTP trigger, confirming that the customer was

successfully added to the database. Use the CustomerAdded.tpl template.

Hint: You do this by updating the F.RequestHTML BLOB that you defined in step

1.

3. The customer has now been successfully added to the Customers table and the

Contacts table, but the indication of its existence in the Requests database is

still set to false. Update the Requests table.

4. Execute the project again and use the HTML page you created in Lesson 12 to

check the status of the request. If there is a hyperlink under the CustomerID

instead of a name, click the hyperlink.

Summary
In this lesson, you added the Add Customer flow, which was triggered by a Web

service. Using the request number sent from the Web service, you fetched the request

data from the ODS and inserted information into the Customers table and the Contacts

table.

You learned how to:

 Expose Magic xpi as a Web service.
 Add an additional trigger to the flow.
 Retrieve information from the ODS.

Handling Approved Requests 165

Handling Approved Requests
Publish and Subscribe (PSS) utilities are a way of distributing information to your

network. When an event is published in your integration project, flows that are

subscribed to the event are invoked.

The concept is the same as having a magazine subscription. When you subscribe to

the magazine, you do not need to constantly check for the latest edition. The publisher

sends you the latest edition when the magazine is published. If you are not subscribed

to this magazine you will not be 'bothered' with information you don't want. The

benefit of using the PSS method is that your systems do not need to constantly refresh

and check for new information, and this saves system resources.

In previous lessons, you examined incoming requests and logged them in the database

and ODS. Later, you added the option for the user to manually correct faulty requests

where the customer did not exist in the database.

In this lesson you will add flows that will process valid requests. These are requests

where the customer exists and the items are available in stock.

This lesson covers various topics, including:

 Publishing a topic
 Subscribing a flow to a topic

15 Lesson

Handling Approved Requests 166

Publish and Subscribe Utilities
To subscribe to or publish an event, you need to create a topic in the PSS Topics

Repository. This topic represents the event that happened. In the magazine subscription

analogy that was mentioned previously, the topic is the magazine name, but not the

content itself.

The Magic xpi PSS system contains the subscription information. When a published

event occurs, the PSS system sends an invocation request to all the subscribed flows,

even on different Magic xpi Servers.

The PSS system is available to all Magic xpi Servers in the same
project. This means that the other Magic xpi Servers can retrieve data
from this system.

‘Handle Request’ Topic
You will define a new PSS topic, Handle Request. If the request is approved by the

validation flows, the Handle Request topic will be published.

To define a new PSS topic, follow these steps:

1. In the Solution Explorer, under the Repositories

folder, double-click PSS Topics to open the PSS

Topics repository.

2. Click the Add button to add a PSS topic.

3. In the Topic Name column, type HandleRequest.

The letter P is given as a prefix.

Note: The Topic Name cannot contain any of

the following characters: # - & \ / < > { } [] ()

, ; " %, a space or three question marks (???).

4. Click Save.

Handling Approved Requests 167

Subscribing a Flow
In this section, you will create a new flow: the Process Request flow.

When a request is approved, the following steps must be executed:

 Extract the request information.
 Add delivery information to the database.
 Clear the request from the database and delete the dynamic ODS.

To create the Process Request flow:

1. Create a flow named Process Request.

2. Right-click and select Properties.

3. In the Properties pane’s External section, zoom from

the Subscribe Name property and select the

P.HandleRequest topic from the PSS Topic List dialog

box.

A subscribed flow receives three parameters:

 String, passed through C.UserString
 Numeric, passed through C.UserCode
 Blob, passed through C.UserBlob

When the Handle Request topic is published, the request number will be
passed to the Process Request flow in the C.UserCode variable.

You will create a flow variable that will hold the request number that was passed

through a context variable. You do not need to define a new flow variable since you

already have the value in the C.UserCode variable. However it is good practice to

define your own variable with a meaningful name.

4. Add a flow variable named F.RequestNum, type: Numeric and size 5.

?
During this course, every time you created a flow, you were asked to add a
flow variable named F.RequestNum. How else could you have handled
this?

Handling Approved Requests 168

5. Drag a Flow Data utility to the flow area as the first step in the flow.

6. In the Step Name field, type Get request number.

7. Double-click the Get request number step, or right-click on it and select

Configuration from the context menu.

8. In the Flow Data Configuration dialog box, click Add and set the Action

column to Update.

9. Set the Type column to Flow.

10. In the Name column, select the F.RequestNum flow variable.

11. In the Update Expression column, enter an expression for C.UserCode.

You will now take the request information and add it to the delivery database.

12. Drag a Data Mapper step as a child step of the Get request number step.

Name the step Add Delivery Header.

13. Double-click the Add Delivery Header step, or right-click on it and select

Configuration from the context menu.

The Data Mapper window opens.

14. From the Toolbox’s Mapper Schemas section, drag a Database source into the

Source Tree area.

15. Right-click on the Database source and select Show Properties.

16. Enter Get_request_header in the Name property.

17. Use the Database wizard:

a. Select the Requests table.

b. Select the CustomerID column.

c. Set the WHERE clause to: [Requests].RequestId=<?F.RequestNum?>

18. From the Toolbox’s Mapper Schemas section, drag a Database destination into

the Destination Tree area.

19. Right-click on the Database source and select Show Properties.

20. Enter Add_To_Delivery in the Name property.

21. Use the Database wizard:

a. Select the Delivery table.

b. Select all of the columns except for DateSent.

22. Expand the source and destination.

23. Connect CustomerID to Delivery.CustomerID.

24. Park on Delivery.RequestID and enter a Calculated Value: F.RequestNum.

25. Park on Delivery.DateEntered and enter a Calculated Value : Date ().

Date () is an internal Magic xpi function that returns the current date.

Handling Approved Requests 169

You continue the process with the request items. You need to take the items that are

authorized for delivery. In this case, the status of the request is TRUE.

26. Drag a Data Mapper step as a child step of the Add Delivery Header step.

Name the step Add Delivery Details.

27. Double-click the Add Delivery Details step, or right-click on it and select

Configuration from the context menu.

The Data Mapper window opens.

28. From the Toolbox’s Mapper Schemas section, drag a Database source into the

Source Tree area.

29. Right-click on the Database source and select Show Properties.

30. Enter Get_Request_Details in the Name property.

31. Use the Database wizard:

a. Select the RequestItems table.

b. Select the ProductCode and Quantity columns.

c. Set the WHERE clause to: [RequestItems].RequestID=<?F.RequestNum?>

and [RequestItems].Status=1

Status is a Logical field but is defined in the database as BIT. It accepts 0

or 1.

32. From the Toolbox’s Mapper Schemas section, drag a Database destination into

the Destination Tree area.

33. Right-click on the Database source and select Show Properties.

34. Enter Add_To_Delivery in the Name property.

35. Use the Database wizard:

a. Select the DeliveryItems table.

b. Select all of the columns.

36. Expand the source and destination.

37. Connect ProductCode to DeliveryItems.ProductCode.

38. Connect Quantity to DeliveryItems.Quantity.

39. Park on DeliveryItems.RequestID and enter a Calculated Value with the

expression: F.RequestNum.

Handling Approved Requests 170

Deleting the ODS from the System
Once the request has been processed, and in this case delivered, you no longer need

to keep all the references to the request. You need to start a process of system cleanup.

You can remove traces from the temporary databases so that they do not get cluttered

with many records, most of which are no longer valid. One of these storage areas is

the ODS. Once the request has been processed, there is no use for the request

anymore in the ODS. In the course’s example, it will no longer be accessed. Therefore,

you can now remove the ODS from the system:

1. Drag a Flow Data utility as a child of Add Delivery Details. Name the step

Remove ODS entry.

2. Double-click the Remove ODS entry step, or right-click on it and select

Configuration from the context menu.

3. Click Add.

4. Set the Action to Delete.

5. Select the Dynamic property.

6. In the Name property, set the name to: 'Request_' & Trim (Str (F.RequestNum ,

'5'))

You have finished defining the flow. The request has been added to the delivery system

and the ODS has been cleared. Now you need to publish the topic for requests that

have no problems.

Handling Approved Requests 171

Publish the ‘Handle Request’ Topic
The PSS Publish utility publishes events to the PSS system so that the system can invoke

flows that subscribe to the published event.

In this section you will publish the Handle Request topic when the request is found to

be valid.

To publish the topic, do the following:

1. Park on the Scan for New Requests flow.

2. Add the PSS Publish utility as a child step of the Check Items step.

3. Name this step: Publish the Handle Request.

4. Double-click the step, or right-click on it and select Configuration from the

context menu.

5. Zoom from the PSS Name entry

and enter Handle Request in the

Expression Editor.

6. In the Code parameter, set the

following expression:

F.RequestNum.

7. Click OK to confirm.

8. Set a condition for the Publish the Handle Request step:

Trim (F.CustomerName)<>'' AND C.All_Items_Exist

By setting the condition, the Handle Request topic will only be published if the

customer exists and all items are available.

Handling Approved Requests 172

Exercise
In the previous lesson, you added a new customer. Remember that the customer may

have some outstanding requests. Now that the customer is already in the system, their

requests may be attended to.

1. In the Process Request flow, remove the request from the local database tables,

both the Requests and RequestItems tables. This is part of the system cleanup.

2. In the Add Customer flow, publish the Handle Request topic if the customer’s

request is valid. Remember that the request’s items are saved in the

RequestItems table and a valid item is one where the status is TRUE.

To ship this request, all items in the request must be valid.

Summary
This lesson introduced you to the Publish and Subscribe mechanism in Magic xpi. In

this lesson, you used the PSS Publish utility to publish the Handle Request topic.

The Handle Request topic is only published if the request is valid.

The Process Request flow is subscribed to the Handle Request topic. The flow will be

invoked when the Handle Request topic is published.

Automatic Item Check 173

Automatic Item Check
In cases where the incoming request was found to be valid, it is processed and

removed from the database. Requests that were found to be invalid are kept in the

database and ODS, until the fault is corrected manually (adding the customer to the

database) or items that did not have sufficient quantity in stock are now fully stocked.

For these requests, you need to provide a follow-up mechanism that checks whether the

requests that are logged in the database are still invalid.

The follow-up mechanism will re-examine all of the requests from the database and

process those that are valid.

In this lesson, you will learn about various topic including:

 Scheduling a flow
 Flow Enablement

Lesson 16

Automatic Item Check 174

Scheduler Utility
You have learned about many different ways to invoke a flow:

 The flow starts immediately by setting the AutoStart flow property to Yes.
 Calling the flow from a different flow using the Call Flow destination of the Data

Mapper utility.
 An external event occurs, which triggers the flow.
 An internal event occurs using the Publish and Subscribe utility.

There are situations where a flow needs to be invoked at a specific time or time

interval.

The Scheduler utility enables you to create schedules for flow invocation. During

deployment, the Magic xpi Server uses the information in the Scheduler system to

invoke flows at the required time periods.

The Scheduler handles timer events, created by the integration project developers,

which determine the schedule for flow invocation.

The Scheduler has an entry for every timer event for flows on the particular server. The

entry contains the date and time for when the flow should be executed. The Magic xpi

Server constantly checks the Scheduler, and, when a scheduler entry’s time arrives, the

Magic xpi Server invokes the appropriate flow.

When you make changes to your integration project, the Scheduler system is updated

with any new timer events.

You define schedules in the Flow Editor. To define a scheduler for a flow, you need to

first define a Scheduler service in the Settings dialog box’s Service section. You then

need to drag a Scheduler utility to the Triggers area, and select the Scheduler service

that you just defined.

Automatic Item Check 175

You will now create a flow that will scan all requests in a timely manner.

1. In the Settings dialog box’s Service section, add a new Scheduler service.

Name it AutomaticCheck.

2. Set the Scheduler Type field to Interval, and leave the Calculate Scheduler

Runtime at Startup check box selected.

3. Set the Minutes field to 2.

4. Click OK to close the Settings dialog box.

5. Insert a new flow named Requests Auto Check.

6. Right-click on the flow name and select Move Flow Up. Move it above the

Check Item flow.

7. Drop a Scheduler utility into the flow’s Triggers area.

8. Double-click the Scheduler utility, or right-click on it and select

Configuration from the context menu.

9. In the Scheduler Utility dialog box, type Request_Auto_Check in the Name

field.

10. Set the Select Scheduler Service field to AutomaticCheck. You will then see the

values that you defined in the Scheduler service (above).

Automatic Item Check 176

In the course scenario, there are three possible reasons that the status of the request

may be considered invalid:

 There is not enough stock to meet the required request.
 The price that the customer is prepared to pay is too low.
 The item does not exist in the database. You will not handle this scenario.

11. Drop a Data Mapper utility onto the flow. Name it Check Request Items.

12. Create a Database source named RequestItems.

13. Using the wizard:

 Select the RequestItems table.
 Select the RequestId, ProductCode, Quantity and RequestPrice columns.
 Set the WHERE clause to: [RequestItems].Status=0. Only lines that are

considered invalid will be fetched.

You need to check the reason for each item; therefore, you can call a flow and pass

parameters to the flow. Before continuing, you need to create the new flow.

14. Insert a new flow named Check Reason.

15. Right click on the flow name and select Move Flow Up. Move it below the

Check Item flow.

16. Add the following flow variables:

 F.RequestNum – Numeric of size 5.
 F.ItemCode – Alpha of size 30.
 F.RequestQuantity – Numeric of size 9.2.
 F.RequestPrice – Numeric of size 9.2.

17. Add a Data Mapper step as the first step in the flow and name the step

Check Item Reason.

18. Double-click the Check Item Reason step, or right-click on it and select

Configuration from the context menu.

19. Create a Database source named FetchItems.

20. Using the wizard:

 Select the Products table.
 Select the CatalogPrice and StockQuantity columns.
 Set the WHERE clause to: [Products].ProductCode='<?F.ItemCode?>'

Automatic Item Check 177

Now you are going to update the RequestItems table according to special conditions:

21. Create a Database destination named UpdateItems.

22. Using the wizard:

 Set the DB Operation to Update.
 Select the RequestItems table.
 Select the Quantity and Status columns.
 Set the WHERE clause to:

RequestID=<?F.RequestNum?> and ProductCode='<?F.ItemCode?>'
You may need to manually add the apostrophes before and after
<?F.ItemCode?>, because the product code is a string field and this is the
requirement of the SQL syntax.

23. Expand the source and destination.

24. Connect CatalogPrice to Quantity and to Status.

25. Connect StockQuantity to Quantity and to Status.

26. Park on Quantity and enter a Calculated Value with the expression:

IF (Src.S1/Record/CatalogPrice < F.RequestPrice AND

Src.S1/Record/StockQuantity < F.RequestQuantity,

Src.S1/Record/StockQuantity, F.RequestQuantity)

This expression means that if the price is more than the catalog price and the

requested quantity is more than the stock, then the request will be updated with

the stock amount. This means, of course, that all the stock will be used to

deliver this request.

27. Park on Status and enter a Calculated Value with the expression:

IF (Src.S1/Record/CatalogPrice < F.RequestPrice AND

Src.S1/Record/StockQuantity < F.RequestQuantity,’TRUE’LOG,’FALSE’LOG)

In the previous expression, you set the value of the requested amount to a valid

amount. Therefore, this entry can now be seen as valid.

28. Return to the Requests Auto Check flow.

29. Double-click the Check Request Items step, or right-click on it and select

Configuration from the context menu.

30. Create a new Call Flow destination named Call_Request_Check.

31. In the Flow Name property, select the Check Reason flow.

In the Data Mapper window:

32. Connect the RequestId source node to F.RequestNum.

33. Connect the ProductCode source node to F.ItemCode.

34. Connect the Quantity source node to F.RequestQuantity.

35. Connect the RequestPrice source node to F.RequestPrice.

Automatic Item Check 178

Flow Enablement
Another flow property that you need to be aware of is the flow enablement. The

Enablement section of a flow’s Properties pane defines when the flow is available to

be activated.

When a flow needs to be activated, the Magic xpi Server checks whether the flow is

currently enabled.

You define when you want the flow to be activated. Select one of the following from

option:

 Always – The flow is always enabled.
 Weekly – You can define on which days of the

week and at which times this flow will be
enabled.

 Monthly – You can define in which months
and which days in the month this flow will be
activated. For example, you can define that
the flow will only run on the 7th of January,
April, July and October.

In much the same way as you previously defined a Scheduler service, the Weekly and

Monthly options (above) are configured in the Settings dialog box’s Service section.

You then ‘import’ these settings into the flow’s properties.

First, you create a Flow Enablement service and select either Weekly or Monthly in the

Activation Type field. You then select the relevant check boxes for the days or the

months that you want to activate your flow. Then, in the Enablement Service field in the

flow’s Properties pane, you select the required Flow Enablement service’s name. Your

flow will then be enabled according to the settings that you defined in the Flow

Enablement service.

If the flow is not enabled and a request to invoke it arrives via a trigger mechanism,

such as an HTTP request or a Scheduler action, the flow will not be invoked and the

activation request will be ignored.

Automatic Item Check 179

Exercise
In this lesson, you corrected invalid requests. However, they remain in the system and

are not sent out. Remember that it is the Handle Request topic handles the valid

requests.

 Define a scheduled flow that is activated at midnight and:

a. Scans the open requests.

b. Publishes the Handle Request topic if an open request has at least one

valid line in the request. Remember that the status is saved in the

RequestItems table.

Remember to only publish the request if the customer exists.

Summary
This lesson provided you with additional ways to control when a flow is invoked.

You learned about:

 The Scheduler utility
 Flow enablement

During the lesson, you fixed invalid requests. If it was found that there was not enough

in stock to supply the request, you modified the request. You then set a new scheduler

that would run once a day and handle any requests that were still in the system.

Automatic Item Check 180

More About Magic xpi 181

More About Magic xpi
In previous lessons, you learned how to transfer and manipulate data using the

Data Mapper. However, there are some rules that govern what can be mapped and

what cannot be mapped. This is very evident when trying to map XML data to other

XML data. Knowledge of the rules that the Data Mapper uses will enable you to avoid

future problems.

This lesson will introduce you to the rules used by the Data Mapper. You will also learn

some additional mapping techniques.

This lesson covers various topics, including:

 Simple element mapping
 Complex element mapping
 Email XML configuration
 User Defined Storage (UDS)

Lesson 17

More About Magic xpi 182

More about the Data Mapper
The Magic xpi Data Mapper deals with mapping issues on two levels:

 Single element – The following elements are considered to be single elements:

 An element with the Max Occurrences node property set to 1. You can
see the Max Occurrences value of a compound node when you select
Show Properties and go to the Properties pane’s Additional XML
Properties section.

 An element with a filter.
 A duplicate node.
 A complex element in the destination with no mapping.

 Complex element – The following elements are considered to be complex elements:

 An element with child elements.
 An element with the Max Occurrences node property greater than 1.

Single Elements

You can map the following elements in the Data Mapper window:

 One source complex element to a destination complex element.
Mapping a complex element tells the Data Mapper to execute the destination
complex element the same number of times as the source complex element.

 Single source multiple simple elements to one destination simple element (if the
destination type is XML or Template).

 Source complex elements can be mapped to a flow variable complex element.
 Most sibling elements can be mapped. You will learn more about this over the

following pages.

Simple data mapping is done automatically by the Data Mapper. You do not need to

create an expression.

More About Magic xpi 183

For the examples on the following pages, you have a sample project.

1. Copy the folder Mapper_Sample from the Course Files folder to the

My Documents\Magic\projects folder.

2. Open the Mapper_Sample project.

Automatic Mapping

Automatic complex element mapping ensures that no data is lost while mapping.

Whenever simple elements are mapped without a parent complex element mapping,

Magic xpi automatically connects the first parent complex element of the source and

destination elements where the Max occurrences node property is greater than 1.

1. Park on the Automatic mapping flow.

2. Park on the first Data Mapper step, and double-click or right-click on it and

select Configuration.

3. Connect e to y.

You see in the image above that a parent has been connected automatically. You used

this throughout the course.

More About Magic xpi 184

When the Max Occurrences node property equals 1, the Data Mapper will

automatically map the parent of the step that has a Max Occurrences value greater

than 1.

1. Park on the Automatic mapping flow.

2. Park on the second Data Mapper step, and double-click or right-click on it and

select Configuration.

3. Connect f to x.

You will see in the image above that B was automatically connected to Y. This is

because C has a Max occurrences value of 1.

Complex Element

Complex data mapping is carried out by:

 Using the destination data expression.
The expression can include flow variables and functions and simple elements from
the source XML connected to the destination element.

 Using the Expression Editor to call external code, such as Java, uniPaaS, or DLL
code.
This option is used for complex data mapping that needs an external function call.

More About Magic xpi 185

Cross Mapping

Cross mapping occurs when you already have complex elements mapped and need to

map source elements across the complex element mapping line to a parent destination

element.

1. Park on the Cross mapping flow.

2. Park on the Data Mapper step, and double-click or right-click on it and select

Configuration.

3. You can see that the complex element C is connected to Z.

4. Connect e to w.

You will see that e crosses the previous connection and that C was automatically

mapped to Y.

More About Magic xpi 186

Sibling Mapping

Now you will try to map siblings:

1. Park on the Source Sibling Compound flow.

2. Park on the Data Mapper step, and double-click or right-click on it and select

Configuration.

3. You can see that c is connected to w and therefore B was automatically

mapped to Y.

4. If you try to connect e to x, you will get an error.

The reason for this is that the Data Mapper has no way of determining the

number of iterations to execute on the sibling.

To overcome this, you need to ensure that the C complex element has a Max

Occurrences of 1. This can be implemented by changing the schema or adding a

filter.

1. Park on C and access the properties. Enter a condition for the Single Instance

Filter, such as 'TRUE'LOG.

2. Connect e to x. This time, the action should be successful.

The condition you entered is an example. The actual expression to use would

depend on your own data.

Data Management Best Practices

The Data Mapper is a very powerful tool, but has an overhead of time and memory.

Consider using the Data Mapper only when you need mapping capabilities. For

instance:

 Use the Flow Data utility instead of the Data Mapper to update variables.
 Use the Data Mapper’s Call Flow option only when you need to process many

records. Use the Invoke Flow utility if you need to process one record only.
 When you need to store data temporarily, it is more efficient to use a file saved in

a variable, such as a BLOB, than to use the ODS. The ODS is a table stored in a
database, and thus consumes more memory than a memory file. However, the
ODS is persistent and can be recovered from failure. You will learn about the
memory file in this lesson.

More About Magic xpi 187

Runtime Considerations

Now that you have a good understanding of how the Data Mapper works, there are

some issues that are important during execution.

 When you have a condition and an update expression on a compound node, the
update expression will be calculated first, regardless of the condition expression.
This means that variables contained in the update expression will always be
updated.

 The Data Mapper has a specific order in which it executes the requested
operations. These should be taken into account when you are designing the step:

Execution Order

The execution order is based on the order of the destination items, starting from the

top.

If you reorder the destinations, the execution order may also change.

The following are executed at the same time:

 Database
 Flat File
 Variable
 ODS
 Call Flow
 UDS

The following are executed individually:

 XML
 JSON
 Template

More About Magic xpi 188

Email XML Configuration
You learned about the Direct Access Method of configuring a step, which is used in

most cases. However, there are instances in which you need to configure the

component using its XML configuration method. Some external components only have

an XML interface.

Assume that when a request is sent to the delivery system, you need to update a

defined list of people that you have to update by email, such as the warehouse

manager, the sales manager, and the accounts manager. You can use a single email

step to send the same email to a list of names defined in a text file.

To map the information directly to the Email component, you will use the Email

component's XML interface.

1. Open the Magic_xpi_course project.

2. Park on the Process Request flow.

3. Add an Email component as a child of the Add Delivery Details step. Name the

step Send Confirmation emails.

4. Set the Processing Mode to Parallel.

5. Set the Interface to XML.

6. Double-click the Email component, or right-click on it and select Configuration.

The Data Mapper window opens.

In the Destination Tree, there is an entry called IFC_Email. This is automatically added

as a result of the XML interface.

More About Magic xpi 189

Using a Flat File

Before continuing with the Email XML configuration, you need to define the

Data Mapper source.

You are going to map comma-delimited data from a flat file to an XML file. The flat file

in question has a defined structure that you need to understand to extract information.

In the Data Mapper window:

7. From the Toolbox’s Mapper Schemas section, drag a Flat File source into the

Source Tree area. Name the source FetchMailList.

The comma-delimited file name is: emails.txt.

The file is located in the %currentprojectdir%\course_data\Files directory.

You can take a look at the file in order to understand the file structure and how it

should be set in the Flat File source’s Properties pane. In this case, it is a very simple

structure.

8. In the Flat File source’s Properties pane:

 Set the Source Type property to File.
 In the File Path property, use the Expression Editor to select the

currentprojectdir environment variable, and define the following
expression:
EnvVal ('currentprojectdir')&'course_data\Files\emails.txt'

 Set the Include Delimiter property to Yes.
 In the Lines property, click .

The Flat File dialog box opens.

More About Magic xpi 190

You can define whether each field in the text file is separated from the next by a

delimiter or in a fixed position. The options will change according to the option you

select in the dropdown list. In the Flat File dialog box:

9. Set the separator option to Delimited. This is the default.

10. Set the Delimiter to a comma. This is also the default.

11. Define the following:

Name Data Type Format From Length

FirstName Alpha 30 30

LastName Alpha 30 30

email Alpha 255 255

More About Magic xpi 191

In the Data Mapper window:

12. In the Destination Tree, open the QuickSend node.

13. Connect the following nodes and set the following destination expressions:

Source Destination Expression

 OrderIndex 1

email To

 Subject 'Please follow up on the request'

FirstName Body
'Good day '&Src.S1/Record/FirstName &','& ASCIIChr
(10)&'Please follow up on Request '&Str (
F.RequestNum,'5')

More About Magic xpi 192

User Defined Storage (UDS)
While working with the ODS, you noticed some limitations:

 The structure is predefined and cannot be changed. For example, if you wanted to
save two time fields in a record, you were unable to.

 ODS is kept in a table with all the overhead of a regular database table.

The User Defined Storage, or UDS, is very similar to ODS, but it addresses the above

"limitations" by:

 Enabling you to define the structure.
 Creating the data as a user-defined table in memory in a BLOB.

The UDS Repository

In the UDS Repository, you define the actual structure of the table. You define it

according to your needs. This is very similar to defining a database table. You define

the list of fields, and you define which of the fields will be the index.

Assume that when the Scan DB for valid requests flow runs, you need to create a

simple audit trail of what was scanned and send the file to the system administrator.

The fields that need to be in the audit trail include:

 Time stamp
 Customer ID
 Request ID
 Request value

This structure is new and needs to be defined.

More About Magic xpi 193

To access the UDS Repository:

1. In the Repositories section of the Solution Explorer, double-click on UDS to open

the UDS Repository. You can also press SHIFT+F10.

The UDS Repository opens. As with other repositories there are two panes, the left and

the right. In the left pane you provide a name for the UDS, and in the right pane you

define the variables.

2. Click Add on the left pane, and set the name to AuditTrail. You cannot use

spaces here.

3. On the right pane, click Add.

4. Set the Name property to TimeStamp with a type of Alpha and a size of 20.

5. Select the Index check box.

You have now defined the first column in the structure and have defined that this will

be the index. You will now define two more columns:

6. On the right pane, click Add. Set the Name property to CustomerId, a Numeric

field of size 5.

7. Click Add again. Set the Name property to RequestNum, a Numeric field of

size 5.

You have now defined a UDS structure. You have three columns, one of them being the

structure’s index.

More About Magic xpi 194

The UDS structure forms a model for your use. It is simply the definition of a structure.

You therefore need to define a variable that will be based on this model.

When you define a new flow variable, you can define that this variable is of the same

type as the UDS that you previously created.

1. Under the Scan DB for valid requests flow, double-click Flow Variables.

2. Click Add to add a flow variable and name it Audit_trail.

3. Park on the Type column and open the dropdown list. You will see that the UDS

model that you defined is one of the structure’s to be selected. Select

U.AuditTrail.

4. Double-click the Scan requests step, or right-click on it and select Configuration

from the context menu.

5. In the Source Tree. right-click on ScanRequests and select Show Properties.

6. In the Wizard process, add the CustomerId column.

7. From the Toolbox’s Mapper Schemas section, drag a UDS destination into the

Destination Tree area.

8. Right-click on the UDS destination and select Show Properties.

9. Enter Create_audit_trail in the Name property.

10. In the Variable property, select F.Audit_Trail.

11. Expand the source and destinations.

More About Magic xpi 195

You can now see the three columns of the UDS structure:

12. Connect RequestId to RequestNum.

13. Connect CustomerId to CustomerId.

14. Park on the TimeStamp node and enter a Calculated Value:

DStr (Date (),'DD/MM/YYYY')&' '&TStr (Time (),'HH:MM:SS')

Now that you have written to the UDS, you can retrieve the information. You can do

this with the Data Mapper.

15. Add a Data Mapper step as the child step of Scan requests. Name the step

Create Trail.

16. Double-click the Create Trail step, or right-click on it and select Configuration

from the context menu.

17. From the Toolbox’s Mapper Schemas section, drag a UDS source into the

Source Tree area.

18. Right-click on the UDS source and select Show Properties.

19. Enter FetchUDS in the Name property.

20. In the Variable property, select F.Audit_Trail.

You can now map this to a text file.

21. From the Toolbox’s Mapper Schemas section, drag a Flat File destination into

the Destination Tree area.

22. Right-click on the Flat File destination and select Show Properties.

23. Enter CreateFile in the Name property.

24. Set the Destination Type to File, and set the destination file to:

EnvVal ('currentprojectdir')&'course_data\out\audit_trail.txt'

More About Magic xpi 196

25. Set the properties so that they look like the image below:

26. Expand the source and destination, and connect the nodes to one another.

More About Magic xpi 197

Exercise – Mapping a Flat File to an Order
In this lesson, you discussed the XML interface, and you used an advanced

Data Mapper technique in which you used a flat file.

In this exercise, you are going to map comma-delimited data from a flat file to an XML

file.

The flat file contains comma-delimited data. The first column determines the line type

(H = Header, L = Line).

You need to map all header type data to the Header compound in the XML, and all

line type data to the Item compound in the XML.

The image below shows you the structure of the example files. It is presented here to

give you a hint about how to map these files.

All files are located in the %currentprojectdir%\course_data\Files directory.

For the purpose of this example, add a new flow called Create XML Order from ASCII.

Place the XML file in the OUT directory, and name it Order.xml.

More About Magic xpi 198

Summary
In this lesson, you learned about additional Magic xpi features.

 You learned more about the Magic xpi Data Mapper, including some of the issues
to take into consideration on single and complex elements.

 You learned about flat file mapping.
 You also learned about UDS storage and how to use it.

When working with UDS, remember:

 UDS data is stored in the memory, and is therefore available to the current running
flow only.

 You can copy the UDS data to a BLOB to enable you to use it at a later stage.
 The UDS Repository can be used only with the Flow Data utility and the Data

Mapper utility.
 Once you define UDS models in the UDS Repository, they will be added to the list

of the flow variable types (in the Flow Variable repository's Type column).

From Development to Deployment 199

From Development to Deployment
Magic xpi project development is carried out in the Magic xpi Studio. You build your

project with the Magic xpi Studio, which runs on Windows. Magic xpi Integration

Platform includes the Studio, the Magic Monitor, a deployment server known as the

Magic xpi Server, and the In-Memory Data Grid (IMDG). This enables you to build

your project and test it in a controlled environment.

When the development environment and the deployment environments both run on the

Windows operating system, there should be very few problems with running the flows

in a project. However, remember that the deployment environment may not be a

Windows operating system.

As you are getting ready to move your project from the development environment to

the test or production environment, there are several steps you need to perform.

This lesson covers various topics, including:

 Deployment issues
 Database issues

Lesson 18

From Development to Deployment 200

Recommendations
To be sure that your project will run when you deploy it on the server, you must

consider the following issues:

 It is recommended to use the same database type for the Magic xpi internal and
application databases that you are going to use in deployment environments. This
means that if your development internal database was Microsoft SQL Server, then
you should use the same server type in deployment.

 It is recommended that you disable or clear all debugging code from the project
before deploying. For example, disable or clear the flows, messages, and
programs used for debugging purposes.

 Use environment variables when you provide names or addresses to servers,
messaging queues, and aliases.

 It is good practice to use environment variables in resources and services.
Magic xpi achieves portability by translating the environment variables at runtime,
according to the values entered in the Settings dialog box’s Environment section.

 It is important to remember that the Magic xpi engines run under the user that is
defined for the GSA service, and not by the logged in user. By default, the user
that is defined for the service is the Local System account as shown in the image
below. For running Magic xpi on a single machine, this is usually fine. However,
on a clustered environment, the service should run as a user who has privileges to
access network resources.

Deployment Issues
When you are ready to deploy your projects, you need to prepare the server

environment.

It is highly recommended that you rebuild your project whenever you make any

changes to it, and also prior to deployment, by selecting the Rebuild Solution option

from the Build menu.

If you saved any environment variables under the General Environment section of the

Settings dialog box, make sure that you copy the relevant variables to the Magic.ini

file of any new deployment environment.

From Development to Deployment 201

If you deploy the project in a different deployment environment, you need to modify

the start.xml file to match the new project location and host name. Alternatively, you

can delete the file completely and then rebuild the project in the new environment.

It is good practice to test your project in the deployment environment to ensure that you

have correctly configured and deployed your project.

For more information about deploying projects in a clustered environment, see the

Magic xpi 4.x - Advanced Deployment Guide.pdf file included with the Magic xpi

installation.

From Development to Deployment 202

Summary
In this lesson, you have learned about:

 Recommendations
 Deployment issues

Remember that when you deploy, the only component of Magic xpi Integration

Platform that you will need is the Magic xpi Server.

If you plan to deploy your project on a non-Windows platform, you should consider

the differences in the operating systems when you develop your project. Read the

Magic xpi Help for assistance on these systems.

Course Data 203

Course Data
The sample data needed to do these exercises are in the course_data directory, which contains the

following folders:

 schemas – Holds the request.xsd schema.
 out – This contains three sample XML files that adhere to the request.xsd schema.
 in – This is empty. To start running the project you need to copy one of the request XML files into

this folder.
 templates – This contains templates that you will need during the course.
 Files – This directory contains some files needed for the more advanced lessons.
 DB – This contains files needed to create the MSSQL database.

Sample XML Requests
Three XML requests are provided as examples:

Request001.xml The customer exists in the database.
 Line 1 – The price is too low.
 Line 2 – The line is good.
 Line 3 – There is not enough in stock.

Request002.xml The customer does not exist.

Request003.xml The request is a valid request.

Course Data 204

Entity Relations Diagram (ERD)
The diagram below shows the relationship between the MSSQL tables that you will be using in this

course:

Solutions

Solutions 206

Solutions 207

Solution Lesson 4 – Resources
You need to add a resource that will connect to the course database. To do this:

1. From the Project menu, select Settings.

2. In the left hand pane of the Settings dialog

box, park on Resources.

3. Click Add.

4. In the Resource Type field, using the

dropdown list, select the Database.

5. In the Resource Name field, type Course Database.

In the right hand pane of the Settings dialog box, you will define the properties for MSSQL:

6. Set the DBMS property to Microsoft SQL Server.

The property list changes according to the MSSQL settings:

7. Set the Database name property to Magic_xpi_course. This is the course database.

8. Set the Server, User, and Password properties to the MSSQL login options of your system.

9. Click Validate to check the connection.

Solutions 208

Solution Lesson 5 – Scan for New Requests
You are required to add a step that sends an email to notify the administrator that a new request has

arrived. In the course, you will be using a single valid email, postmaster@magic.xpi.course.com.

You will use this for all the tests.

1. Park on the Toolbox pane.

2. Click and drag the Email component and drop it on the Scan Directory step.

Right-click on the Email component and select Properties.

3. In the Properties pane’s Name field, enter Send Email to Sales.

4. In the Properties pane’s Settings section, make sure that the Course email resource has been

automatically selected. It is automatically selected because it is the only email resource that

you have defined.

5. Double-click the Send Email to Sales step, or right-click on it and select Configuration from

the context menu.

The Direct Access Method dialog box opens:

6. In the left pane, click Add.

7. Select Quick Send from the dropdown list.

In the right pane, you define the Method Details.

8. In the To property, enter postmaster@magic.xpi.course.com.

9. In the Subject property, type

'A new request has arrived'.

The apostrophes are

important here as this is a

string value.

10. In the Body property, type

'A new request has arrived'.

The apostrophes are

important here, since this is a string value.

In the Scan Directory step, you defined that the file name and path would be returned in a variable

named C.UserString. Therefore:

In the Attachment Path property, type C.UserString. You will change this in a later lesson.

Solutions 209

Solution Lesson 6 – Flow Orchestration

Adding Variables

You are required to add variables that are to be used in place of the Magic xpi predefined

variables.

1. Under the Scan for New Requests entry in the Solution Explorer, double-click Flow Variables.

The Flow Variables repository opens. Click Add to add a variable.

2. Set the Name property to RequestXML and tab to the Type property. The name will change to

F.RequestXML.

3. Open the Type dropdown list and select BLOB.

4. Add the following flow variables:

Name Type Length

RequestFileName Alpha 255

CustomerEmail Alpha 100

CustomerName Alpha 100

CustomerId Numeric 9

5. Under the Repositories entry in the Solution Explorer, double-click Global Variables. The

Global Variables repository opens.

6. Click Add to add a variable.

7. Set the Name property to EmailTo and tab to the Type property. The name will change to

G.EmailTo.

8. Open the Type dropdown list and select Alpha.

9. In the Length field, enter 100.

10. In the Default Value property, enter postmaster@magic.xpi.course.com.

Solutions 210

Now you have to use these variables:

11. Double-click the Scan Directory step, or right-click on it and select Configuration from the

context menu.

12. Make sure that LAN to LAN is selected in the left pane.

13. On the right pane, park on the Return File To property. Click the Browse button . Select the

F.RequestXML variable that you defined.

14. Park on the Return Destination Filename To property. Click the Browse button . Select the

F.RequestFilename variable that you defined.

15. Double-click the Send Email to Sales step, or right-click on it and select Configuration from

the context menu.

16. Make sure that Quick Send is selected in the left pane.

17. On the right pane, park on the To property and enter G.EmailTo as the value.

The last stage is to define a condition:

18. Park on the Send Email to Sales step.

19. Open the context menu and select Condition.

20. Enter the following expression: Trim (F.RequestFileName) <>''.

21. Click Verify to make sure that the expression you defined is correct.

22. Click OK.

Your flow will look something like this:

Solutions 211

Solution Lesson 7 – Checking Customer Existence

Checking Customer Existence

You are required to check the existence of the contact.

The first stage is to define the contact ID variable.

1. In the Solution Explorer, under the Scan for New Requests entry, double-click on Flow

Variables.

2. In the Flow Variables repository, click Add to add a variable.

3. Set the Name property to ContactId and tab to the Type property. The name will change to

F.ContactId.

4. Open the Type dropdown list and select Numeric.

5. Set the Length to 9.

Now you need to extract the information from the XML:

6. Double-click the Extract details from request step, or right-click on it and select Configuration.

7. In the Destination Tree area, right-click on the Variables entry and select Show Properties.

8. In the Properties pane, click the Variable field’s button and select the F.ContactId variable

that you defined. Note that you need to close the Extract details from request step’s window
and reopen it again for this variable to be added successfully.

9. In the Source Tree, open the Request node, then the CustomerDetail node, and then the

ContactDetail node.

10. Connect ContactID to F.ContactId.

Solutions 212

To check the existence of the contact:

11. Drag a Data Mapper utility as a child step of the Check if the customer exists step. Name this

step Check the Contact.

12. Double-click the Data Mapper utility, or right-click on it and select Configuration from the

context menu to open the Data Mapper window.

13. From the Toolbox’s Mapper Schemas section, drag a Database source into the Data Mapper

window’s Source Tree area.

14. Right-click on the XML source and select Show Properties.

15. Enter CheckContact in the Name property.

The Database Definition property points to the Course Database that you defined.

16. In the Properties pane’s Wizard field, click the button. The Select Tables dialog box

opens.

17. Park on the Contacts entry in the Available Tables pane.

18. Click Add. The Contacts entry is removed from the Available Tables and added to the

Selected Tables pane.

19. Click Next. The Select Columns dialog box opens.

20. Park on the ContactName entry in the Available Columns pane.

21. Click Add. The ContactName entry is removed from the Available Columns and added to the

Selected columns pane.

22. Click Next. The Where Clause dialog box opens.

23. Park on [Contacts]CustomerID in the Available Columns pane and double-click.

[Contacts]CustomerID is added to the Where Clause Text pane.

24. Park on the Where Clause Text pane and type = after [Contacts]CustomerID.

The text should now read: [Contacts]CustomerID =

25. Park on F.CustomerId in the Variables pane and double-click. The text should now read:

[Contacts]CustomerID = <?F.CustomerId?>

26. You now need to fetch the contact part. Park on the Where Clause Text pane and type AND

after [Contacts]CustomerID = <?F.CustomerId?>.

27. Complete the WHERE clause so that the WHERE clause will be:

[Contacts]CustomerID = <?F.CustomerId?> AND [Contacts].ContactID=<?F.ContactId?>

You have finished fetching the contact from the database.

Solutions 213

The next stage is to map the record retrieved by the Data Mapper to a variable. You already

learned how to do this earlier in this lesson.

28. From the Toolbox’s Mapper Schemas section, drag a Variable destination into the Data

Mapper window’s Destination Tree area.

29. Right-click on the Variable destination and select Show Properties.

30. Enter ContactName in the Name property.

31. In the Properties pane, click the Variable field’s button and select the F.ContactName

variable.

32. Connect the ContactName node on the source to F.ContactName in the destination.

Remember that if no record is found, F.ContactName will be blank.

Now you need to condition this step so that if the previous step did not succeed there is no need to

do this step.

33. Select Condition from the context menu of the step.

34. Set the following condition: Trim (F.CustomerName)<>''.

If the contact does not exist, then you need to send them a reply email. This is something you have

already done in a previous exercise.

35. Park on the Toolbox pane.

36. Click and drag the Email component and drop it on the Check the contact step.

37. In the Email component’s Properties pane, enter Send Rejection Email in the Step Name field.

38. In the Properties pane’s Settings section, make sure that the Course email resource has been

automatically selected. It is automatically selected because it is the only email resource that

you have defined.

39. Double-click the Email component, or right-click on it and select Configuration from the

context menu.

Solutions 214

The Direct Access Method dialog box opens:

40. In the left pane, click Add.

41. Select Quick Send from the dropdown list.

In the right pane, you define the Method Details.

42. In the To property enter F.CustomerEmail.

43. In the Subject property, type 'Request status'. The apostrophes are important here as this is a

string value.

44. In the Body property, type 'You are not registered as an official contact for your company.

Please approach your company representative.'. The apostrophes are important here as this

is a string value.

45. Click OK.

Now you simply need to condition the step:

46. Select Condition from the context menu of the Send Rejection Email step.

47. Set the following condition: Trim (F.ContactName)=''.

Solutions 215

Solution Lesson 10 – Item Validity Check

Requested price is too low

The client wants to purchase the item at a price less than the list price. The solution is very similar to

the process where you checked whether there is enough stock. To check whether the price is less

than the list price, do the following:

1. Under the Check Item flow, double-click on Flow Variables.

2. In the Flow Variables repository, add a flow variable named F.RequestPrice which is

Numeric with a size of 9.2.

3. Double-click the Report Items Existence Data Mapper step, or right-click on it and select

Configuration from the context menu.

4. Right-click on the CheckItem source node and select Show Properties.

5. In the Properties pane, use the Database Wizard to update the SQL statement:

 Click Next until you reach the columns selection dialog, and select the CatalogPrice
column of the Products table. This will add the CatalogPrice as another selected
column.

 Click Next until you have finished, as you will not be making any other selections. You
will receive a message that some of the connections may be lost, but you can ignore
the messages by clicking OK.

6. In the Data Mapper window, connect CatalogPrice to the C.All_Items_Exist node.

7. Right-click on C.All_Items_Exists and select Show Properties. You may find that your previous

Calculated Value expression has been removed. This happened as a result of modifying the

SQL statement. In any case, you will need to enter a new expression:

Src.S1/Record/CatalogPrice < F.RequestPrice AND Src.S1/Record/StockQuantity

>=F.Quantity AND C.All_Items_Exist

8. Park on the Scan for new requests flow.

9. Double-click the Check Items Data Mapper step, or right-click on it and select Configuration

from the context menu.

10. Map from USPrice to F.RequestPrice.

Solutions 216

The item does not exist

The client wants to purchase an item that does not exist in the catalog. There are a number of ways

to solve this. The solution that will be explained here involves:

 Defining a flow variable.
 Updating the flow variable with FALSE.
 Updating the flow variable with TRUE in the Data Mapper.
 Updating C.All_Items_Exist with FALSE if the flow variable is FALSE.

How does it work? When the Data Mapper finds a record, it updates the flow variable with TRUE. If

the flow variable is FALSE after exiting the Data Mapper, it indicates that the Data Mapper did not

find a matching record and therefore there was no mapping connection.

1. Under the Check Item flow, double-click on Flow Variables.

2. In the Flow Variables repository, add a flow variable named F.ItemExists and set it as a

Logical type.

You need to add a parent step to the Report Items Existence step:

3. Click and hold the keyboard Ctrl button.

4. Select the Flow Data utility from the Toolbox pane, and drag and drop it on the Report Items

Existence step.

5. A menu will pop up. Select Make As Parent.

6. In the Flow Data utility, set the Step Name property to: Update flow variable.

7. Double-click the Update flow variable step, or right-click on it and select Configuration from

the context menu.

8. In the Flow Data Configuration dialog box, add an entry for:

 Action: Update
 Type: Flow
 Name: F.ItemExists
 Update Expression: 'FALSE'LOG

You can now modify the Data Mapper step:

9. Park on the Report Item Existence step. Select Configuration from the context menu.

10. In the Destination Tree area, right-click the Update_General_Check_Var node and select

Show Properties.

11. Select the F.ItemExists variable. Close the dialog box.

12. Park on the F.ItemExists node and select Show Properties.

13. Enter a Calculated Value for 'TRUE'LOG.

14. Add a Flow Data utility as a child step of the Report Item Existence step.

15. In the Flow Data utility, set the Step Name property to: Update context variable

Solutions 217

16. Add an entry for:

 Action: Update
 Type: Context
 Name: C.All_Items_Exist
 Update Expression: 'FALSE'LOG

17. Set a condition for this step: Not (F.ItemExists).

F.ItemExists is a logical variable that contains either TRUE or FALSE. There is no need to implicitly use

a condition such as F.ItemExists = 'FALSE'LOG.

Your Check Item flow will now look similar to the image below:

Solutions 218

Adding the Request Information to the Database

To do this you need to have a Database type as the destination in a Data Mapper step.

You can do this in the Data Mapper step that you have already defined. In this step you currently

read from the Request XML and then call the Check Item flow to check each item.

You will modify this step in the following way:

 In addition to the Call Flow destination, you will be adding a Database destination. You will use
the Database destination to insert records to the Requests table.

 The items will be inserted in the called flow. You are already handling each item in the called
flow so as part of the process you can add the current record to the database.

The default transaction level of the Data Mapper is for the entire step. Therefore, if there is a problem

writing to one of the tables and there is a rollback, no data will be written to the database tables.

1. Park on the Scan for New Requests flow.

2. Double-click the Check Items step, or right-click on it and select Configuration from the

context menu.

Bear in mind that because the data is being added within a transaction, you will not see them in the

database until the Check Items step is completed.

3. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

4. Right-click on the Database destination and select Show Properties.

5. Enter AddRequest in the Name property.

6. Use the Wizard and:

 Select Delete as the DB Operation.
 Select the Requests table.
 Select all of the columns from the Requests table.

7. In the Data Mapper window:

 Park on the Requests.RequestId node of the Request table destination and select
Show Properties from the context menu. Enter a Calculated Value for F.RequestNum.

 Connect Customer_ID from the source to Requests.CustomerId on the destination.
 Connect Request_Total from the source to Requests.RequestTotal on the destination.
 Park on Requests.CustomerExists and select Show Properties from the context menu.

Enter a Calculated Value for Trim (F.CustomerName) <>''. Remember that if the Check
Customer Exists step failed to fetch a customer name, the F.CustomerName variable
will be blank.

Solutions 219

You have finished adding the request. Now you need to add the lines. You will do this in the called

flow.

8. Park on the Check Item flow.

9. Double-click the Report Items Existence step, or right-click on it and select Configuration from

the context menu.

10. Park on the Database source and select Show Properties. Use the Wizard and add the

CatalogName column from the Products table.

11. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

12. Right-click on the Database destination and select Show Properties.

13. Enter AddRequestItems in the Name property.

14. Use the Wizard and:

 Select Insert as the DB Operation.
 Select the RequestItems table.
 Select all of the columns from the RequestItems table.

15. In the Data Mapper window:

 Park on the
RequestItems.RequestId
node of the RequestItems
table destination and
select Show Properties
from the context menu.
Enter a Calculated Value
for F.RequestNum.

 Park on the RequestItems.ProductCode node of the RequestItems table destination and
select Show Properties from the context menu. Enter a Calculated Value for
F.ItemCode.

 Park on the RequestItems.Quantity node of the RequestItems table destination and select
Properties from the context menu. Enter a Calculated Value for F.Quantity.

 Park on the RequestItems.RequestPrice node of the RequestItems table destination and
select Show Properties from the context menu. Enter a Calculated Value for
F.RequestPrice.

 Connect CatalogName to RequestItems.ProductName.
 Connect CatalogPrice to RequestItems.Status.
 Connect StockQuantity to RequestItems.Status.
 Park on the RequestItems.Status node and select Show Properties from the context

menu. Enter a Calculated Value with the following expression:
Src.S1/Record/CatalogPrice < F.RequestPrice AND Src.S1/Record/StockQuantity >=
F.Quantity
This is a similar expression to the expression you entered to update C.All_Items_Exist.

You can now run the flow and test your work.

Solutions 220

Initialization Flow

You have used the Data Mapper to select information from a table and you have now used the Data

Mapper to insert records into a table. You will now use the Data Mapper to delete records from a

table.

1. In the Solution Explorer, right-click on Business Process-1 and

select Add Flow.

2. Change the flow name to Initialization.

3. Select Properties from the context menu of the flow. Set the

AutoStart property to Yes.

4. Add a Data Mapper step to the Initialization flow and name it Delete Items DB.

5. Double-click the Delete Items DB step, or right-click on it and select Configuration from the

context menu.

In this step, you will not be using a source in the Data Mapper.

6. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

7. Right-click on the Database destination and select Show Properties.

8. Enter DeleteRequests in the Name property.

9. Use the Wizard and:

a. Select Delete as the DB Operation.

b. Select the Requests table. Note that you are unable to select other tables once this has

been selected.

c. As you want to remove all the records, there is no need for a WHERE clause.

10. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

11. Right-click on the Database destination and select Show Properties.

12. Enter DeleteRequestItems in the Name property.

13. Use the Wizard and:

a. Select Delete as the DB Operation.

b. Select the RequestsItems table. Note that you are unable to select other tables once this

has been selected.

c. As you want to remove all the records, there is no need for a WHERE clause.

There is no need to map in this case.

You can now run this flow to test.

Solutions 221

Solution Lesson 11 – Services
You are going to add a service that you will be using in the next lesson. You are adding an HTTP

service that you will need in the next lesson.

1. Open the Projects menu and select Settings. The Settings dialog box opens.

In this lesson, you added the RequestConfirmation service. If you did not add it, then select Add and,

in the New Service dialog box, select HTTP and then type RequestConfirmation.

2. Park on the RequestConfirmation node and click Endpoints.

The EndPoint dialog box opens.

3. Click Add and type check_request_status.

4. Park on the Argument Details pane and click Add.

5. Enter RequestNum as the Name parameter. This must have a data type of Numeric and a

size of 5.

6. Select the Generate Sample HTML check box.

When you click OK, Magic xpi automatically creates a sample HTML page under:

My Documents\Magic\projects\< project name>\<current project>\Service\<Service name>

As an example, the path to the HTML will be:

C:\Users\<your user name>\My Documents\Magic\projects\Magic_xpi_course\

Magic_xpi_course\Service\RequestConfirmation\ check_request_status.html

If you click on the HTML in the path above, you will get an HTML similar to the image below. You

can modify the look and feel of this HTML page.

Solutions 222

Solution Lesson 12 – Checking Request Status

You need to return the F.Result_HTML file to the Internet browser. You have only updated the header

section in which you have either displayed the name of the customer or a hyperlink.

To update the F.Result_HTML file you will be using the Data Mapper with a Template destination.

1. Park on the Check Request Status flow.

2. Add a Data Mapper step as the child step of Get Customer Information. Name this step Send

Response Page.

3. Double-click the step, or right-click on it and select Configuration from the context menu.

As you have already fetched the customer details, you only need to fetch the request’s lines:
4. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source Tree

area.

5. Right-click on the Database source and select Show Properties.

6. Enter Request_items in the Name property.

7. Use the Wizard and:

 Select the RequestItems table.
 Select ProductCode, ProductName and Status from the RequestItems table.
 Enter the following WHERE clause:

[RequestItems].RequestID=<?F.HTTP_Request_Num?>

8. From the Toolbox’s Mapper Schemas section, drag a Template destination into the

Destination Tree area.

9. Right-click on the Template destination and select Show Properties.

10. Enter ReturnStatus in the Name property.

11. Set the Template File property to: %templates%\RequestStatus.tpl (if you remember, you

already created the templates environment variable). If you do not have the templates

environment variable set up, you can manually select the template file. The tpl extension is

not a required extension. You can use any file as a template as long as it has the required

Merge tags.

12. Set the Destination Type to Variable and select

the F.Result_HTML variable.

Solutions 223

Now you have to map to update the variable.

In the Data Mapper window, you will see that the Destination Tree contains the Merge tags that

were fetched from the template. The tags that were defined within an MGREPEAT section are listed

as a compound node in the destination.

13. Park on the Header node and select Show Properties from the context menu. Enter a

Calculated Value of F.RequestHeader. This is the header that you updated during the lesson.

14. Connect ProductCode to ItemCode.

15. Connect ProductName to ItemName.

16. Connect Status to LineStatus.

17. Park on the LineStatus node and select Show Properties from the context menu. Enter a

Calculated Value with the following expression:

IF (Src.S1/Record/Status ,'All OK', 'There is a problem!')

Solutions 224

File Management Component

When the HTTP trigger invokes a flow, it is recommended to send a response page for every

scenario of the flow logic. As you may have realized, the user may request information for a request

that has not yet been logged in the system. To answer that need, you will return a predefined HTML

file. You will now add a File Management component to the flow that loads a predefined HTML

page when a request is not found.

The predefined file is currently located under the Files directory. The first step will be to create an

environment variable that points to this location. It is important to do this as you will be referring to

this in the next lesson.

1. From the Project menu, select Settings.

2. Under General Environment, click User Environment Variables.

3. Add an entry named Files, with a value of %currentprojectdir%course_data\Files%sl%.

You can now continue with the File Management step:

4. Add a File Management component as a child step of the Get Information from DB step.

5. Name this step: Request Not Found.

6. Double-click the step, or right-click on it and select Configuration from the context menu.

7. In the Configuration dialog box, add a method for Read File.

8. In the From File Name parameter, enter:

EnvVal ('currentprojectdir') &'course_data\Files\RequestNotFound.htm'

You can do this with the Expression Assistor. You can select an environment variable by

clicking .

9. In the Data parameter, select the F.Result_HTML.

10. Condition the Request Not Found step to NOT (F.RequestExists).

11. Park on the Get Customer Information step and condition the step to F.RequestExists.

Solutions 225

Solution Lesson 13 – Error Handling
You are asked to handle a situation where the File Management component returns an error. In the

specific example, the Internet browser must also be updated. As this is a specific issue, a generic

flow will not be useful. Remember, of course, that you need to update the F.Returned_HTML variable

so that the requester can return it to the Internet browser.

To solve this issue, you can create an error policy in the same flow where the error occurs.

1. Park on the Check Request Status flow.

2. Add a Data Mapper step as the child step of Get Information from DB. Name this step Send

Error Page.

3. Set a condition of FALSE for this step.

4. Double-click the Send Error Page step, or right-click on it and select Configuration from the

context menu.

Solutions 226

5. From the Toolbox’s Mapper Schemas section, drag a Template destination into the

Destination Tree area.

6. Right-click on the Template destination and select Show Properties.

7. Enter ReturnErrorPage in the Name property.

8. Set the Template File property to: %templates%\Error.tpl. Remember that the tpl extension is

not a required extension. However error.tpl is the name of the file.

9. Set the Destination Type to Variable and select F.Result_HTML.

You do not need to define anything in the Source Tree.

10. Expand the destination.

The template file has only two Merge tags.

11. Park on ErrorCode and enter a Calculated Value with the expression:

Str (C.sys.LastErrorCode ,'5')

12. Park on Errordescription and enter a Calculated Value with the expression:

C.sys.LastErrorDescription

Although you are adding a single step here you can add as many steps as needed. For example,

you can add an email step that sends an email to the administrator. It is important that the

administrator is also updated.

13. Add an Email component as a child step of the Send Error Page step. Name the step Update

Admin.

14. Double-click the Update Admin step, or right-click on it and select Configuration from the

context menu.

15. Select the Method interface. Select the Quick Send method and set the following:

a. To: postmaster@magic.xpi.course.com

b. Subject: 'Urgent: A necessary file was not found'

Solutions 227

Remember: The email step is provided purely as an example.

16. Under the Check Request Status flow, double-click Error Policies.

17. Click Add.

18. Click the zoom button in the From column. This loads the Errors Repository dialog box, where

you can select an error for a specific component.

19. From the dropdown list, select File Management. Only the error types for the File

Management component will now be displayed.

20. Select 200, which is Folder does not exist.

21. In the To property, select 216, which is Operation failed. This is the last component error

defined by the File Management component.

22. In the Error Policy column, select Jump.

23. Click the zoom button in the Step column. You see only the steps in the current flow. Select

the Send Error Page step.

You are done. You can test this by sending a request that has not been logged. Before doing that,

rename the Files folder to something else.

The image below is similar to what will appear in your Internet browser.

Solutions 228

Solution Lesson 14 – Adding a Customer
In a previous lesson, you learned how to accept a request from the Web using the HTTP component.

This process returned an HTML page that included a link for adding a new customer if the customer

did not exist in the database.

In the current lesson, you added the Add Customer flow which was triggered by a Web service.

Using the request number sent from the Web Service, you fetched the request data from the ODS

and inserted information into the Customers table and the Contacts table.

Therefore, the necessary steps for adding a customer exist. You will add another trigger to this flow

that completes the Add Customer scenario. This is triggered from the Internet browser.

You will first add a new endpoint to the HTTP Service.

1. From the Project menu, select Settings. Open the Services node and select the

RequestConfirmation service.

2. Click Endpoints to open the Endpoint dialog box. Click Add to add a new endpoint.

3. Set the Endpoint Name to add_customer.

4. Park on the Arguments pane and click Add.

5. Enter RequestNum as the Name parameter. This must be a Numeric data type and have a

size of 5.

Now you can use the Add Customer flow:

6. Park on the Add Customer flow.

7. Add another BLOB type flow variable, F.ResultHTML. This will contain the returned HTML

information.

8. Drop an HTTP component into the Triggers area and set the name to Add Customer.

9. Double-click the HTTP trigger, or right-click on it and select Configuration from the context

menu.

10. Open the Endpoint Name dropdown list. You will now see two entries. Select the

add_customer entry.

In the Argument Details section:

11. Park on Mapping Variable and click the button. Select F. RequestNum from the selection

list.

12. Park on the Return Value variable and select the F.ResultHTML variable.

13. Click OK to close the dialog box.

A new trigger has been added to the flow.

Solutions 229

The next stage is to return the information to the Internet browser that the customer was added.

1. Add a Data Mapper utility as a child step of the Add Customer to DB step. Name the step

Update Browser.

2. Double-click the Data Mapper, or right-click on it and select Configuration from the context

menu.

The Data Mapper window opens.

3. From the Toolbox’s Mapper Schemas section, drag an XML source into the Source Tree area.

4. Right-click on the XML source and select Show Properties.

5. Enter RequestXML in the Name property.

6. In the XSD File field, type: course_data\schemas\request.xsd

7. Set the Data Source to Variable and select the F.RequestXML variable.

8. From the Toolbox’s Mapper Schemas section, drag a Template destination into the

Destination Tree area.

9. Right-click on the Template destination and select Show Properties.

10. Enter Customer_was_added in the Name property.

11. In the Template File field, type: %Templates%CustomerAdded.tpl

12. In the Destination Type field, select Variable and select the F.ResultHTML flow variable.

13. Expand the source and destination.

14. Connect Customer_Name to CustomerName.

You could, of course, have added this operation to the previous step. It was separated in this

example for clarity.

Solutions 230

Update Customer Status

The last stage is to update the Requests table that the customer now exists. You will now configure

the Data Mapper utility with an update statement.

1. Add a Data Mapper utility as a child step of the Update Browser step. Name the step

Change Customer Status in DB.

You can add all the steps in this solution as a single Data Mapper
step.

2. In the Description field, type: This step updates the DB using a dynamic WHERE clause.

3. Double-click the Data Mapper, or right-click on it and select Configuration from the context

menu.

The Data Mapper window opens.

4. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

5. Right-click on the Database destination and select Show Properties.

6. Enter Customer_Details in the Name property.

7. Open the Wizard.

8. Set the DB Operation field to Update. This is the first time you are using this operation.

9. Select the Requests table and then select the CustomerExists column.

10. Click Next.

11. In the Where Clause screen, type:

RequestId = <!?RequestNum?!> (See note below.)

When specifying a dynamic name in the Where Clause Text section,
the name must be surrounded with <!? as the prefix and ?!> as the
suffix
In the Data Mapper, the Where compound will contain a new node
and the name will be the one that you specified in the <!?Name?!>
tag.
You can then connect values to the node; thereby building a Dynamic
Where Clause.

Solutions 231

You have completed the Database Wizard for an Update statement.

The final result will be:

UPDATE [Requests] SET CustomerExists=<!?CustomerExists?!> WHERE

RequestId=<!?RequestNum?!>

12. In the Data Mapper window, expand the destination.

13. Park on the CustomerExists node and enter a Calculated Value of 'TRUE'LOG.

14. Park on the dynamic variable, RequestNum, and enter the following Calculated Value:

F.RequestNum

You are now ready to test.

Solutions 232

Solution Lesson 15 – Handling Approved Requests
During the lesson, you were asked if using the flow variable, F.RequestNum, every time you defined

a flow was the ideal solution. The answer is that you could define a context variable,

C.RequestNum. The value in this variable is valid as long as the context is alive, but the variable

definition exists throughout the project.

The request is still in the local databases, you need to remove it from the database so that the request

will not be handed a second time.

1. Park on the Process Request flow.

2. Add a Data Mapper step as a child step of Add Delivery Details and name it Remove from

DB.

3. Set the processing mode to Parallel.

4. Double-click the Data Mapper, or right-click on it and select Configuration from the context

menu.

In this step, you will not be using a source in the Data Mapper.

5. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

6. Right-click on the Database destination and select Show Properties.

7. Enter DeleteRequests in the Name property.

8. Use the Wizard and:

 Select Delete as the DB Operation.
 Select the Requests table. Note that you are unable to select other tables once this has

been selected.
 As you want to remove only those records matching the current request, set the WHERE

clause to: RequestId = <?F.RequestNum?>.

9. From the Toolbox’s Mapper Schemas section, drag a Database destination into the

Destination Tree area.

10. Right-click on the Database destination and select Show Properties.

11. Enter DeleteRequestItems in the Name property.

12. Use the Wizard and:

 Select Delete as the DB Operation.
 Select the RequestsItems table. Note that you are unable to select other tables once this

has been selected.
 As you want to remove only those records matching the current request, set the WHERE

clause to: RequestId = <?F.RequestNum?>.

There is no need to make any mapping connections in this case.

Solutions 233

In the Add Customer flow, you added a customer if it did not appear in the database. The customer

may have shippable requests. If there are shippable items, you will publish the topic so that they may

be added to the delivery database. Remember that a shippable item is one where the status is 1.

There are many ways to do this. You can use the solution from Lesson 11:

 Defining a flow variable.
 Updating the flow variable with FALSE.
 Updating the flow variable with TRUE in the Data Mapper.
 If the flow variable is TRUE, then you can publish.

How does it work? When the Data Mapper finds a record, it updates the flow variable with TRUE. If

the flow variable is FALSE after exiting the Data Mapper, it indicates that the Data Mapper did not

find a matching record and therefore there was no mapping connection.

1. Park on the Add Customer flow.

2. Add a flow variable named F.ItemExists which has a Logical type.

3. Select the Flow Data utility from the Toolbox, and drag and drop it on the Add Customer to

DB step.

4. In the Flow Data utility, set the name property to: Update flow variable.

5. Set the processing mode to Parallel.

6. Double-click the Flow Data utility, or right-click on it and select Configuration from the context

menu.

7. Add an entry for:

 Action: Update
 Type: Flow
 Name: F.ItemExists
 Update Expression: 'FALSE'LOG

Solutions 234

Defining the Data Mapper step:

8. Add a Data Mapper step as the child step of Update flow variable. Name the step Check for

valid items.

9. Double-click the Data Mapper, or right-click on it and select Configuration from the context

menu.

The Data Mapper window opens.

10. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source Tree

area.

11. Right-click on the Database source and select Show Properties.

12. Enter Get_Request_Details in the Name property.

13. Use the Database wizard:

 Select the RequestItems table.
 Select the ProductCode column.
 Set the WHERE clause to: [RequestItems].RequestID=<?F.RequestNum?> and

[RequestItems].Status=1
Status is a logical field, but is defined in the database as BIT. It accepts 0 or 1.

14. From the Toolbox’s Mapper Schemas section, drag a Variable destination into the

Destination Tree area.

15. Right-click on the Variable destination and select Show Properties.

16. Enter Update_Variable in the Name property.

17. Expand the source and destination.

18. Connect the ProductCode source node to F.ItemExists. The Data Mapper needs at least one

connection.

19. Right-click on the F.ItemExists node and select Show Properties from the context menu.

20. Enter the following Calculated Value: 'TRUE'LOG.

Solutions 235

The last stage is to publish the topic:

21. Add the PSS Publish utility as a child step of the Check for valid items step.

22. Name the step Publish the Handle Request.

23. Double-click the PSS Publish step, or right-click on it and select Configuration from the context

menu.

24. Zoom from the PSS Name entry and enter Handle Request in the Expression Editor.

25. In the Code parameter, set the following expression: F.RequestNum.

26. Click OK to confirm.

Now you need to set a condition for this step.

27. Set a condition for the Publish the Handle Request step: F.ItemExists.

You have now published to the same flow from two different flows.

Solutions 236

Solution Lesson 16 – Automatic Item Check
In the lesson, you fixed problematic requests. However, these requests are not passed to the delivery

system.

You will now create a flow that will scan all requests in a timely manner.

1. Insert a new flow named Scan DB for valid requests.

2. Right-click on the flow name and select Move Flow Up. Move it above the Check Reason

flow.

3. In the Settings dialog box’s Service section, add a new Scheduler service. Call it

Midnight_Scan.

4. Select Daily from the Scheduler Type pulldown menu.

5. Park on the Time(s) to Execute property and click the button.

The Enablement Time dialog box opens.

6. Click New.

7. Set the time to 00:00.

8. Drop a Scheduler utility into the flow’s Triggers area.

9. In the Name field, type Midnight Scan.

10. Double-click the Scheduler utility step, or right-click on it and select Configuration from the

context menu.

11. In the Scheduler Utility dialog box, click New and type MidnightScan in the Name column.

12. In the Select Scheduler Service field, select Midnight_Scan to use the Scheduler settings that

you defined above.

13. Click OK.

The Scheduler is now set to midnight.

Solutions 237

You now need to scan the system for open requests where the customer also exists. To do this you

need to:

 Scan the Requests table for requests and fetch the Request number.
 For each request, scan the request items table and check whether there is a valid request. If there

is a valid request, you need to publish to the handle request topic. You will perform this part of
the scenario in a separate flow.

1. Insert a new flow named Scan requests items.

2. Right-click on the flow name and select Move Flow Up. Move it to just below the

Check Reason flow.

3. Add the following flow variables:

 F.RequestNum – a Numeric variable of size 5.
 F.ItemExists – a Logical variable.

4. Add a Flow Data utility from the Toolbox. Set the Name property to: Update flow variable.

5. Add an entry for:

 Action: Update
 Type: Flow
 Name: F.ItemExists
 Update Expression: 'FALSE'LOG

Defining the Data Mapper step:

6. Add a Data Mapper step as the child step of Update flow variable. Name the step Check for

valid items.

7. Double-click the Data Mapper step, or right-click on it and select Configuration from the

context menu.

The Data Mapper window opens.

8. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source Tree

area.

9. Right-click on the Database source and select Show Properties.

10. Enter Get_Request_Items in the Name property.

11. Use the Wizard and:

 Select the RequestItems table.

 Select the ProductCode column.

 Set the WHERE clause to: [RequestItems].RequestID=<?F.RequestNum?> and

[RequestItems].Status=1

Status is a logical field but is defined in the database as BIT. It accepts 0 or 1.

Solutions 238

12. From the Toolbox’s Mapper Schemas section, drag a Variable destination into the

Destination Tree area.

13. Right-click on the Variable destination and select Show Properties.

14. Enter Update_Variable in the Name property.

15. Select the F.ItemExists variable.

16. Expand the source and destination.

17. Connect the ProductCode source node to F.ItemExists. The Data Mapper needs at least one

connection.

18. Right-click on the F.ItemExists node and select Show Properties.

19. Enter a Calculated Value for 'TRUE'LOG.

The next step is to publish the request if an item was found:

20. Add the PSS Publish utility as a child step of the Check for valid items step.

21. In the Name field, type Publish the Handle Request.

22. Double-click the PSS Publish step, or right-click on it and select Configuration from the context

menu.

The PSS Publish Configuration dialog box opens.

23. Zoom from the PSS Name entry and enter Handle Request in the Expression Editor.

24. In the Code parameter, set the following expression: F.RequestNum.

25. Click OK to confirm.

Now you need to set a condition for this step.

26. Set a condition for the Publish the Handle Request step: F.ItemExists.

Solutions 239

All that is left to do is to call this flow:

1. Park on the Scan DB for valid request flow.

2. Add a Data Mapper step as the first step and name it Scan requests.

3. Double-click the Data Mapper step, or right-click on it and select Configuration from the

context menu.

4. From the Toolbox’s Mapper Schemas section, drag a Database source into the Source Tree

area.

5. Right-click on the Database source and select Show Properties.

6. Enter ScanRequest in the Name property.

7. Use the Wizard and:

 Select the Requests table.
 Select the RequestId column.
 Enter the following WHERE clause: [Requests].CustomerExists=1

8. From the Toolbox’s Mapper Schemas section, drag a Call Flow destination into the

Destination Tree area.

9. Right-click on the Database source and select Show Properties.

10. Enter ScanItems in the Name property.

11. From the Flow Name property, click the button and select the Scan Requests Items flow.

12. Expand the source and destination.

13. Connect RequestId to F.RequestNum.

This flow is the last part of the cleanup of the invalid requests. Every night at midnight, the Scheduler

will run and clean the system.

Solutions 240

Solution Lesson 17 – More About Magic xpi

Mapping Flat File to Order

This is an exercise which has nothing to do with the course scenario. It is provided as an extra

scenario so that you may understand other techniques.

1. Insert a new flow named Create XML Order from ASCII.

2. Add a Data Mapper to the flow.

3. Name it ASCII Order to XML.

4. Double-click the Data Mapper step, or right-click on it and select Configuration from the

context menu.

5. From the Toolbox’s Mapper Schemas section, drag a Flat File source into the Source Tree

area.

6. Right-click on the Flat File source and select Show Properties.

7. Enter ASCII_Order in the Name property.

The comma-delimited file name is: order.txt.

The file is located in the %currentprojectdir%course_data\Files folder.

You can take a look at the file to better understand the file structure and to see how it should be set

in the Flat File properties dialog box.

8. In the Flat File source’s Properties pane, set the following properties:

 Set the Source Type property to File.
 Set the File Path to: EnvVal('currentprojectdir') &'course_data\Files\Order.txt'.

9. In the Lines property, click .

10. In the Flat File dialog box, define the following:

Name Data Type Format From Length

Identifier Alpha 30 30

Field1 Numeric 9 9

Field2 Numeric 9 9

Price Numeric 5.2 9

Name Alpha 30 30

Solutions 241

11. From the Toolbox’s Mapper Schemas section, drag an XML destination into the Destination

Tree area.

12. Right-click on the XML destination and select Show Properties.

13. Enter XML_Order in the Name property.

14. Set the XSD File to: course_data\Files\Order.xsd

15. Set the Destination Type to File. Create the file in:

EnvVal ('currentprojectdir')&'course_data\out\order.xml'

Data Mapping

The idea behind this example is that the same field in the source file should be mapped to both

Header columns and Item columns.

In addition, the first column should be processed to separate the line type indicator and the actual

data.

By using an expression in the CustomerID and ItemID elements, you can filter the first column's

source data. Using an expression in the destination compounds helps you filter the mapped data.

In the Data Mapper window, map the following sources to destinations:

1. Connect Record to Header and Item.

2. Connect Field1 to CustomerID and ItemID.

3. Connect Field2 to OrderID and Quantity.

4. Connect Price to ItemPrice.

5. Connect Name to ItemName.

Setting an Identifier = Header expression in the Header compound ensures that only Header type

rows will be written to this compound. The line identifier is the first character in each line.

Note that when you map compounds, all of their columns/elements are available in the Expression

Editor.

In the Destination Tree:

6. Park on the Header node and select Show Properties.

7. Park on the Condition property and select a condition for:

Src.S1/Record/Identifier ='H'

You will repeat this for the Item node.

8. Park on the Item node and select Show Properties.

9. Park on the Condition property and select a condition for:

Src.S1/Record/Identifier ='L'

Solutions 242

	Getting Started with Magic xpi 4.5
	Introduction
	About the Course
	Course Prerequisites
	How to Use This Tutorial
	Exercises
	Course Material

	Magic xpi Overview
	Introduction
	Magic xpi Studio
	Integration Flows

	Components
	Flow Orchestration
	Data Management

	Deploying Your Project
	Magic xpi Server
	In-Memory Data Grid
	Magic Monitor
	Magic xpi Debugger

	Version Control
	Tools
	Connector Builder
	Checker
	Text Search

	Summary

	Magic xpi Methodology
	Identifying Business Processes
	Identifying Participating Applications
	Identifying Project Resources
	Identifying Project Services
	Designing Flows
	Testing and Deploying
	Summary

	Magic xpi Project
	Starting the Magic xpi GSA Service
	Creating a Project
	Created Project Files
	Course Data

	Environment Variables
	Project Properties
	Course Project
	Company Description
	The Current Status
	Defining the “Challenge”
	The Proposed Solution
	Project Description

	Summary

	Resources
	Advantages
	Resource Types
	Adding a New Resource

	Exercise
	Summary

	Scan for New Requests
	Flow Editor
	Defining a Magic xpi Flow
	Renaming Flows
	Creating a New Flow
	Flow Properties
	General Section

	Introduction to Variables
	Flow Components
	Directory Scanner Component
	Using a Component
	Component Properties
	Component Configuration
	Configuring the Directory Scanner Example

	Exercise
	Email Component
	Testing Your Project

	Summary

	Flow Orchestration
	Variables
	Environment Variables
	Project-Specific Variables
	Global Variables
	BP Variables
	Flow Variables
	Context Variables

	Flow Logic
	Steps and Branches
	Parallel vs. Linear Execution
	Wait for Completion
	Determining the Next Step to Execute

	Expression Editor
	Exercise
	Summary

	Checking Customer Existence
	Data Mapper
	Data Mapper Window
	XML Properties
	Variable Configuration
	Mapping Sources to Destinations

	Checking for Customer Existence
	Order By

	Exercise
	Summary

	The Runtime Environment
	The Executable File
	Executing a Project
	Magic Monitor
	Activity Log

	Exercise
	Summary

	Testing Your Project
	Magic xpi Checker
	Checker Results

	Magic xpi Debugger
	Controlling the Debugger
	Setting a Breakpoint
	Suspending a Step, Flow, or Branch
	Context Tree
	Context View

	Adding User Messages
	Logging Section
	Logging Scope
	Step Logging Options

	Exercise
	Summary

	Item Validity Check
	Flow Data Utility
	Using the Flow Data Utility

	Operational Data Storage
	Magic xpi ODS System
	Creating a Dynamic ODS

	Check Item Flow
	Calling the Check Item Flow for Each Item
	Exercise
	Summary

	Services
	Services Section
	HTTP Endpoints
	The Trigger Activation

	Exercise
	Summary

	Checking Request Status
	Intervention Process
	Magic xpi Triggers
	Trigger Types
	HTTP Triggers
	The HTTP Component

	HTML Response Page
	Templates
	Exercise
	Summary

	Error Handling
	Magic xpi Error Handling
	Context Error Variables

	Step Error Handling
	Flow Level Error Handling
	Component Type

	Dedicated Error Flow
	Returning the Flow with an Error

	Exercise
	Summary

	Adding a Customer
	Systinet
	Providing a Web Service
	Operations

	Web Service Trigger
	Retrieving Information from the ODS
	Testing the Web Service
	Exercise
	Summary

	Handling Approved Requests
	Publish and Subscribe Utilities
	‘Handle Request’ Topic
	Subscribing a Flow
	Deleting the ODS from the System
	Publish the ‘Handle Request’ Topic
	Exercise
	Summary

	Automatic Item Check
	Scheduler Utility
	Flow Enablement
	Exercise
	Summary

	More About Magic xpi
	More about the Data Mapper
	Single Elements
	Automatic Mapping
	Complex Element
	Cross Mapping
	Sibling Mapping
	Data Management Best Practices
	Runtime Considerations
	Execution Order

	Email XML Configuration
	Using a Flat File

	User Defined Storage (UDS)
	The UDS Repository

	Exercise – Mapping a Flat File to an Order
	Summary

	From Development to Deployment
	Recommendations
	Deployment Issues
	Summary

	Solutions
	Solution Lesson 4 – Resources
	Solution Lesson 5 – Scan for New Requests
	Solution Lesson 6 – Flow Orchestration
	Adding Variables

	Solution Lesson 7 – Checking Customer Existence
	Checking Customer Existence

	Solution Lesson 10 – Item Validity Check
	Requested price is too low
	The item does not exist
	Adding the Request Information to the Database
	Initialization Flow

	Solution Lesson 11 – Services
	Solution Lesson 12 – Checking Request Status
	File Management Component

	Solution Lesson 13 – Error Handling
	Solution Lesson 14 – Adding a Customer
	Update Customer Status

	Solution Lesson 15 – Handling Approved Requests
	Solution Lesson 16 – Automatic Item Check
	Solution Lesson 17 – More About Magic xpi
	Mapping Flat File to Order
	Data Mapping

